
PL/I
Language

Programmer's Guide

Copyright @ 1983

Digital Research
P.O. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
Twx 910 360 5001

All Rights Reserved

i

COPYRIGHT

Copyright @ 1983 by Digital Research, Incorporated. All rights
reserved. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without
the prior written permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for any particular purpose. Further,
Digital Research reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation
of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. LINK-80, LINK-86,
SID, and SID-86 are trademarks of Digital Research. ADM-3A is a
trademark of Lear Siegler Incorporated. IBM is a tradename of
International Business Machines.

The PL/I Language Programmer's Guide was prepared using the Digital
Research TEX-80 Text formatter and printed in the United States of
America.

• First Edition: September 1982

• Second Edition: May 1983

ii

Foreword

Digital Research PL/I is an implementation of PL/I based on American
National Standard X3.74, PL/I General Purpose Subset (Subset G).
Digital Research PL/I is a complete software development system for
both applications and system programming.

Digital Research has implemented PL/I for both 8-bit and 16-bit
microprocessors. At the source-code level, the 16-bit implementations
are upward compatible with the 8-bit implementations.

Digital Research PL/I runs under any of the Digital Research family of
operating systems. It also runs under the IBM Personal Computer Disk
Operating System Version 1.1. This manual assumes you are already
familiar with your operating system, and minimizes references to any
specific system.

The PL/I Language Programmer's Guide is a tutorial introduction to the
features and faculties of PL/I. It should be used in conjunction with
the PL/I Language Reference Manual which is the formal specification of
the language, its syntax and semantics.

This manual is divided into two parts. The first part, Sections 1
through 6, presents a brief introduction to the PL/I language, with
emphasis on block structure, data types, and its various executable
statements. Section 5 gives guidelines for developing a readable
programming style. Section 6 explains the operation of the system as a
whole, and introduces you to the mechanics of compiling, linking, and
executing programs,

The second part, Sections 7 through 18, contains detailed sample
programs that illustrate the useful facilities of the language,
including Input/Output processing, string and list processing,
scientific computation, and business applications. There is also a
discussion about directly accessing certain routines in the Run-time
Subroutine Library, and writing programs that use overlays. Each
section presents general concepts, and then a detailed discussion of
one or more example programs to illustrate the concepts.

The best way to learn any programming language is to study working
examples. To learn PL/I, you should study these example programs along
with the associated text, and cross-check the material with the PL/I
Language Reference Manual when necessary. Once you understand the
operation of a particular program, you can modify the program to
enhance its operation and further your experience with the language.

Table of Contents

iii

Table of Contents

1 INTRODUCTION ... 1-1

1.1 WHAT IS PL/I?.. 1-1
1.2 USING THIS MANUAL ... 1-1
1.3 NOTATION .. 1-1

2 THE PL/I LANGUAGE .. 2-1

2.1 STRUCTURAL STATEMENTS .. 2-1
2.2 DECLARATIVE STATEMENTS... 2-1
2.3 EXECUTABLE STATEMENTS .. 2-1
2.4 PL/I BLOCKS .. 2-2
2.5 PROCEDURES .. 2-3
2.6 DO-GROUPS.. 2-4

3 DECLARATIONS ... 3-1

3.1 SCALAR DATA .. 3-1
3.1.1 Arithmetic Data.. 3-1
3.1.2 String Data... 3-3
3.1.3 Control Data .. 3-4
3.1.4 Pointer Data .. 3-6
3.1.5 File Data.. 3-6

3.2 DATA AGGREGATES ... 3-6
3.2.1 Arrays .. 3-6
3.2.2 Structures ... 3-7

4 EXECUTABLE STATEMENTS.. 4-1

4.1 ASSIGNMENT STATEMENTS .. 4-1
4.2 SEQUENCE CONTROL STATEMENTS .. 4-2

4.2.1 Iteration ... 4-2
4.2.2 Procedure Invocation .. 4-4
4.2.3 Parameter Passing... 4-5
4.2.4 Conditional Branch.. 4-6
4.2.5 Unconditional Branch.. 4-6

4.3 I/O AND FILE-HANDLING STATEMENTS .. 4-7
4.3.1 Opening Files... 4-7
4.3.2 File Attributes .. 4-9
4.3.3 Implied Attributes .. 4-10
4.3.4 Closing Files .. 4-10
4.3.5 File Access Methods .. 4-10
4.3.6 Data Format Items... 4-11
4.3.7 Control Format Items .. 4-11
4.3.8 Predefined Files... 4-12

4.4 CONDITION-PROCESSING STATEMENTS .. 4-12
4.4.1 The ON Statement .. 4-12
4.4.2 The REVERT Statement ... 4-13
4.4.3 The SIGNAL Statement .. 4-13
4.4.4 Condition Categories ... 4-13
4.4.5 Condition Processing Built-in Functions... 4-14

4.5 MEMORY MANAGEMENT STATEMENTS.. 4-15
4.5.1 BASED Variables and Pointers ... 4-15
4.5.2 The ALLOCATE Statement .. 4-16
4.5.3 The FREE Statement.. 4-16

4.6 PREPROCESSOR STATEMENTS... 4-17
4.7 NULL STATEMENTS .. 4-17

Table of Contents

iv

5 PROGRAMMING STYLE ...5-1

5.1 CASE...5-1
5.2 INDENTATION..5-1

6 USING THE SYSTEM ..6-1

6.1 PL/1 SYSTEM FILES ..6-1
6.2 INVOKING THE COMPILER ...6-2
6.3 COMPILER OPERATION..6-3
6.4 THE DEMO PROGRAM ...6-5
6.5 RUNNING DEMO..6-5
6.6 ERROR MESSAGES AND CODES...6-6

7 USING DIFFERENT DATA TYPES...7-1

7.1 THE FLTPOLY PROGRAM ...7-1
7.2 THE DECPOLY PROGRAM...7-2

8 STREAM AND RECORD FILE PROCESSING..8-1

8.1 FILE COPY PROGRAM..8-1
8.2 NAME AND ADDRESS FILE ..8-3

8.2.1 The CREATE Program...8-3
8.2.2 The RETRIEVE Program ...8-5

8.3 AN INFORMATION MANAGEMENT SYSTEM...8-8
8.3.1 The ENTER Program ...8-9
8.3.2 The KEYFILE Program..8-10
8.3.3 The UPDATE Program ..8-12
8.3.4 The REPORT Program ..8-14

9 LABEL CONSTANTS, VARIABLES, AND PARAMETERS ..9-1

9.1 LABELED STATEMENTS...9-1
9.2 PROGRAM LABELS ..9-1
9.3 COMPUTED GOTO..9-2
9.4 LABEL REFERENCES ...9-2
9.5 EXAMPLE PROGRAM ...9-3

10 CONDITION PROCESSING ...10-1

10.1 CONDITION CATEGORIES ..10-1
10.2 CONDITION PROCESSING STATEMENTS...10-1

10.2.1 ON and REVERT..10-1
10.2.2 SIGNAL ..10-3

10.3 EXAMPLES OF CONDITION PROCESSING..10-3
10.3.1 The FLTPOLY2 Program...10-3
10.3.2 The COPYLPT Program ..10-4

11 CHARACTER STRING PROCESSING...11-1

11.1 THE OPTIMIST PROGRAM...11-1
11.2 A PARSE FUNCTION ..11-4

11.2.1 The GNT Procedure ...11-6
11.2.2 The DO-Group ...11-6

12 LIST PROCESSING..12-1

12.1 BASED AND POINTER VARIABLES ...12-1
12.2 THE REVERSE PROGRAM ...12-3
12.3 A NETWORK ANALYSIS PROGRAM ...12-6

12.3.1 NETWORK List Structures...12-8
12.3.2 Traversing the Linked Lists ..12-9

Table of Contents

v

12.3.3 Overall Program Structure .. 12-9
12.3.4 The Setup Procedure.. 12-10
12.3.5 The Connect Procedure ... 12-10
12.3.6 The Find Procedure ... 12-10
12.3.7 The Print-All Procedure .. 12-10
12.3.8 The Print-Paths Procedure .. 12-10
12.3.9 The Print-Route Procedure.. 12-11
12.3.10 The Shortest-Distance Procedure .. 12-11
12.3.11 The Free-All Procedure ... 12-12
12.3.12 NETWORK Expansion ... 12-12

13 RECURSIVE PROCESSING... 13-1

13.1 THE FACTORIAL FUNCTION .. 13-1
13.2 FIXED DECINAL AND FLOAT BINARY EVALUATION ... 13-4
13.3 THE ACKERMANN FUNCTION ... 13-6
13.4 AN ARITHMETIC EXPRESSION EVALUATOR.. 13-7

13.4.1 The Exp Procedure .. 13-9
13.4.2 Condition Processing... 13-10
13.4.3 Improvements... 13-11

14 SEPARATE COMPILATION.. 14-1

14.1 DATA AND PROGRAM DECLARATIONS.. 14-1
14.2 ENTRY DATA.. 14-2
14.3 AN EXAMPLE OF SEPARATE COMPILATION .. 14-3

15 DECIMAL COMPUTATIONS .. 15-1

15.1 A COMPARISON OF DECIMAL AND BINARY OPERATIONS ... 15-1
15.2 DECIMAL REPRESENTATION ... 15-2
15.3 ADDITION AND SUBTRACTION .. 15-4
15.4 MULTIPLICATION.. 15-6
15.5 DIVISION... 15-7

16 COMMERCIAL PROCESSING.. 16-1

16.1 A SIMPLE LOAN PROGRAM... 16-1
16.2 ORDINARY ANNUITY .. 16-3

16.2.1 Mixed Data Types .. 16-5
16.2.2 Evaluating the Present Value PV... 16-6
16.2.3 Evaluating the Payment PHT... 16-7
16.2.4 Evaluating the Number of Periods n.. 16-8

16.3 LOAN PAYMENT SCHEDULE FORMAT ... 16-9
16.3.1 16.3.1 Variable Declarations... 16-13
16.3.2 Program Execution .. 16-14
16.3.3 Display Formats .. 16-14

16.4 COMPUTATION OF DEPRECIATION SCHEDULES... 16-14
16.4.1 General Algorithms.. 16-14
16.4.2 Selecting the Schedule ... 16-14
16.4.3 Displaying the Output .. 16-15

17 DYNAMIC STORAGE AND STACK ROUTINES ... 17-1

17.1 DYNAMIC STORAGE SUBROUTINES... 17-1
17.1.1 The TOTWDS and MAXWDS Functions.. 17-1
17.1.2 The ALLWDS Subroutine... 17-1

17.2 THE STKSIZ FUNCTION... 17-3

18 OVERLAYS ... 18-1

18.1 USING OVERLAYS IN PL/I... 18-1

Table of Contents

vi

18.2 WRITING OVERLAYS IN PL/I...18-2
18.2.1 Overlay Method One ..18-2
18.2.2 Overlay Method Two..18-3
18.2.3 General Overlay Constraints ...18-4

18.3 COMMAND LINE SYNTAX ...18-5

Tables, Figures, and Listings

vii

Tables, Figures, and Listings

Tables

TABLE 3–1 PL/I DATA TYPES ..3-1
TABLE 4–1 PL/I VALID FILE ATTRIBUTES ...4-9
TABLE 4–2 FILE ATTRIBUTES ASSOCIATED WITH I/O ACCESS ..4-10
TABLE 4–3 PL/I CONDITION CATEGORIES AND SUBCODES..4-13
TABLE 6–1 PL/I SYSTEM FILES..6-2
TABLE 6–2 PL/I COMPILER OPTIONS ...6-3
TABLE 15–1. DIFFERENCE OF DECIMAL AND BINARY DATA..15-1

Figures

FIGURE 2–1. PL/I PROCEDURE COMPONENTS ..2-3
FIGURE 3–1. ARRAYS ...3-7
FIGURE 3–2. STRUCTURE DECLARATION HIERARCHY..3-8
FIGURE 4–1. FORMS OF THE DO STATEMENT...4-3
FIGURE 6–1. PL/I PROGRAM DEVELOPMENT ...6-1
FIGURE 8–1. DEFAULT FILENAMES IN THE COMMAND TAIL...8-2
FIGURE 18–1. USING OVERLAYS IN A LARGE PROGRAM..18-1
FIGURE 18–2. TREE STRUCTURE OF OVERLAYS ...18-2

Listings

LISTING 2–1. SAMPLE PL/I PROGRAM...2-2
LISTING 3–1. EXAMPLE OF LABEL VARIABLES...3-4
LISTING 3–2 EXTERNAL PROCEDURE A ...3-5
LISTING 3–3 THE CALL PROGRAM..3-5
LISTING 3–4. EXAMPLE STRUCTURE DECLARATION ..3-7
LISTING 4–1. SIMPLE EXAMPLES OF ASSIGNMENT STATEMENTS...4-2
LISTING 4–2. PARAMETER PASSING ...4-6
LISTING 5–1. PL/1 STYLISTIC CONVENTIONS...5-3
LISTING 6–1. COMPILATION OF DEMO USING $N OPTION..6-5
LISTING 6–2. COMPILATION OF DEMO USING $L OPTION ..6-5
LISTING 6–3. INTERACTION WITH THE DEMO PROGRAM ..6-6
LISTING 6–4. ERROR TRACEBACK FOR THE DEMO PROGRAM ..6-6
LISTING 7–1. POLYNOMIAL EVALUATION PROGRAM (FLOAT BINARY)...7-2
LISTING 7–2. INTERACTION WITH FLTPOLY PROGRAM ...7-2
LISTING 7–3. POLYNOMIAL EVALUATION PROGRAM (FIXED DECIMAL) ...7-3
LISTING 7–4. INTERACTION WITH DECPOLY PROGRAM...7-3
LISTING 8–1. COPY (FILE-TO-FILE) PROGRAM ...8-1
LISTING 8–2. INTERACTION WITH THE COPY PROGRAM ...8-2
LISTING 8–3. CREATE PROGRAM ...8-4
LISTING 8–4. INTERACTION WITH THE CREATE PROGRAM ..8-5
LISTING 8–5. OUTPUT FROM THE CREATE PROGRAM ..8-5
LISTING 8–6. RETRIEVE PROGRAM ...8-7
LISTING 8–7. INTERACTION WITH THE RETRIEVE PROGRAM...8-8
LISTING 8–8. THE ENTER PROGRAM ..8-10
LISTING 8–9. INTERACTION WITH THE ENTER PROGRAM ...8-10
LISTING 8–10. THE KEYFILE PROGRAM ..8-11
LISTING 8–11. INTERACTION WITH THE KEYFILE PROGRAM ...8-11
LISTING 8–12. CONTENTS OF THE KEY FILE...8-12
LISTING 8–13. THE UPDATE PROGRAM ...8-13
LISTING 8–14. INTERACTION WITH THE UPDATE PROGRAM ..8-14
LISTING 8–15. THE REPORT PROGRAM..8-15
LISTING 8–16. REPORT GENERATION TO THE CONSOLE ..8-16
LISTING 8–17. REPORT GENERATION TO A DISK FILE..8-16

Tables, Figures, and Listings

viii

LISTING 9–1. AN ILLUSTRATION OF LABEL VARIABLES AND CONSTANTS ...9-4
LISTING 10–1. THE REVERT PROGRAM..10-2
LISTING 10–2. THE FLTPOLY2 PROGRAM..10-4
LISTING 10–3. THE COPYLPT PROGRAM..10-6
LISTING 10–4. INTERACTION WITH COPYLPT...10-7
LISTING 10–5. OUTPUT FROM COPYLPT ..10-8
LISTING 11–1. THE OPTIMIST PROGRAM...11-3
LISTING 11–2. INTERACTION WITH THE OPTIMIST ...11-4
LISTING 11–3. THE FSCAN PROGRAM ..11-5
LISTING 11–4. INTERACTION WITH THE FSCAN PROGRAM ...11-5
LISTING 12–1. THE REVERSE PROGRAM..12-4
LISTING 12–2. INTERACTION WITH THE REVERSE PROGRAM...12-4
LISTING 12–3. INTERACTION WITH THE NETWORK PROGRAM ..12-7
LISTING 12–4. THE NETWORK PROGRAM ...12-16
LISTING 13–1. THE IFACT PROGRAM..13-2
LISTING 13–2. OUTPUT FROM THE IFACT PROGRAM...13-3
LISTING 13–3. THE RFACT PROGRAM ..13-3
LISTING 13–4. OUTPUT FROM THE RFACT PROGRAM ...13-4
LISTING 13–5. THE DFACT PROGRAM ..13-4
LISTING 13–6. OUTPUT FROM THE DFACT PROGRAM ...13-5
LISTING 13–7. THE PFACT PROGRAM...13-5
LISTING 13–8. OUTPUT FROM THE FFACT PROGRAM..13-6
LISTING 13–9. THE ACK PROGRAM...13-7
LISTING 13–10. INTERACTION WITH THE ACK PROGRAM..13-7
LISTING 13–11. THE EXPRESSION PROGRAM USING EVALUATOR EXPR1 ...13-9
LISTING 13–12. INTERACTION WITH EXPR1 ..13-11
LISTING 13–13. EXPRESSION EVALUATOR EXPR2 ..13-13
LISTING 13–14. INTERACTION WITH EXPR2 ..13-13
LISTING 14–1. AN ILLUSTRATION OF ENTRY CONSTANTS AND VARIABLES ...14-3
LISTING 14–2. MAININVT - MATRIX INVERSION MAIN PROGRAM NODULE..14-5
LISTING 14–3. INVERT MATRIX INVERSION SUBROUTINE..14-6
LISTING 14–4. INTERACTION WITH THE INVMAT PROGRAM ..14-7
LISTING 16–1. THE LOAN1 PROGRAM ..16-2
LISTING 16–2. OUTPUT FROM THE LOAN1 PROGRAM ...16-3
LISTING 16–3. THE ANNUITY PROGRAM ...16-5
LISTING 16–4. INTERACTION WITH THE ANNUITY PROGRAM ..16-5
LISTING 16–5. THE LOAN2 PROGRAM ..16-13
LISTING 16–6. FIRST INTERACTION WITH LOAN2 ...16-14
LISTING 16–7. SECOND INTERACTION WITH LOAN2 ...16-14
LISTING 16–8. THIRD INTERACTION WITH LOAN2 ..16-14
LISTING 16–9. FOURTH INTERACTION WITH LOAN2 ...16-14
LISTING 16–10. THE DEPREC PROGRAM ..16-14
LISTING 16–11. FIRST INTERACTION WITH DEPREC ...16-16
LISTING 16–12. SECOND INTERACTION WITH DEPREC ...16-17
LISTING 16–13. THIRD INTERACTION WITH DEPREC ..16-18
LISTING 16–14. FOURTH INTERACTION WITH DEPREC ...16-18
LISTING 17–1. THE ALLTST PROGRAM ..17-2
LISTING 17–2. INTERACTION WITH THE ALLTST PROGRAM ...17-3
LISTING 17–3. THE ACKTST PROGRAN ..17-4
LISTING 17–4. OUTPUT FROM THE ACKTST PROGRAM ..17-4

Section 1

1-1

1 Introduction

1.1 What is PL/I?
Digital Research PL/I is a programming language that you can use to
write either applications or system-level programs. It is formally
based on American National Standard X3.74, PL/I General Purpose Subset
(Subset G). Subset G has the formal structure of the full language, but
in some ways it is a new language, and in many ways an improved
language compared to its parent.

Digital Research PL/I is easy to learn and use. It is a highly portable
language because its design generally ensures hardware independence. It
is also more efficient and cost effective, because programs written in
PL/I are easier to implement, document, and maintain.

1.2 Using This Manual
This manual is designed to help you learn PL/I by studying sample
programs. If you have never programmed in a structured, high-level
language such as PL/I, you should read Sections 1 through 4 first.
These sections provide you with a brief introduction to the language.
PL/I has features that are similar to other programming languages, but
it also has its own unique constructs and syntax.

Sections 1 through 4 outline the fundamental structure and features of
PL/I in an informal and conceptual framework. This summary can help you
become familiar with the overall capabilities of PL/I and encourage you
to use its full power.

Sections I through 4 are not a complete tutorial on PL/I programming in
general. If you find the overview is not sufficiently detailed, you
might want to read some of the books listed in Appendix E of the PL/I
Language Reference Manual. You should also refer to the material in
Sections 1 through 4 of the PL/I Language Reference Manual.

If you are already an experienced PL/I programmer, you might want to
begin with Section 6, which describes how to compile and link programs.

1.3 Notation
The following notational conventions appear throughout this document:

Words in capital letters are PL/I keywords or the names of PL/I
programs that are described in the text.

Words in lower-case letters or in a combination of lower-case letters
and digits separated by a hyphen represent variable information for you
to select. These words are described or defined more explicitly in the
text.

• Example statements are given in lower-case.

• The vertical bar | indicates alternatives.

• / represents a blank character.

• Square brackets [] enclose options.

PL/I Programmer's Guide 1.3 Notation

1-2

• Ellipses … indicate that the immediately preceding item can occur
once or any number of times in succession.

Except for the special characters listed above, all other punctuation
and special characters represent the actual occurrence of those
characters.

In text, the symbol CTRL represents a control character. Thus, CTRL-C
means control-C. In a PL/I source program listing or any listing that
shows example console interaction, the symbol represents a control
character.

• The acronym BIF refers to one of the PL/I built-in functions

• Throughout this manual, program listings have brackets on the left
side to illustrate and emphasize the block structure of the
language.

• References to material in the PL/I Language Reference Manual are
noted at the end of each section. The acronym LRM denotes Language
Reference Manual. For example,

References: LRM Section 3.1.1

• In this manual, CP/M& refers to any of the Digital Research family
of 8 and 16-bit operating systems. DOS refers to the IBM Personal
Computer Disk Operating System Version 1.1.

• Listings of sample programs in this manual use the device names $CON
and $LST. This is standard for CP/M. However, under a different
operating system, the device names may be different. This does not
affect the way the program runs.

• In this document, the use of color in examples denotes user
interaction with the computer.

End of Section 1

Section 2

2-1

2 The PL/I Language
Every PL/I program consists of one or more statements from three
general categories:

• structural statements

• declarative statements

• executable statements

These categories are not mutually exclusive, but provide a convenient
starting point. The following sections describe and illustrate the
statements in each general category.

2.1 Structural Statements
Structural statements are the foundation of any program because they
define the logical units in a program. These logical units are called
blocks. When a program executes, control always flows from one logical
unit to another. Logical units can contain other logical units, causing
control to flow into and out of the units. You use structural
statements to specify the hierarchical and logical structure in a
program.

2.2 Declarative Statements
Declarative statements always occur in a logical unit defined by a
structural statement, and determine the environment of a logical unit.
The environment is the name and type of all the data variables
available in a logical unit. Use declarative statements to specify the
context of the variables you want to manipulate in a logical unit.

2.3 Executable Statements
Executable statements manipulate storage, transfer the flow of control
between logical units, control the flow of data to and from I/O
devices, and perform calculations. Both structural statements and
declarative statements serve only to create a context for executable
statements.

Listing 2-1 on the following page shows a PL/I program that illustrates
statements from each category. You need not fully to understand the
program or the syntax of each statement at this point, but you can see
the program consists of distinct blocks of statements. Each block is a
logical unit of control.

sample:
procedure options(main);
declare

c character(10) varying;

do;
put skip list('Input: ')
get list(c);
c = upper(c); /* function reference
put skip list('Output: ',c);

end;

PL/I Programmer's Guide 2.4 PL/I Blocks

2-2

begin;
declare

c float binary(24);

put skip list('Input:
get list(c);
call output(c); /* subroutine invocation

end;

upper:
procedure(c) returns(character(10) varying);
declare

c character(10) varying;

return(translate(c,'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
'abcdefghijklmnopqrstuvwxyz'));

end upper;

output:
procedure(c);
declare

c float binary(24);

put skip edit(c) (column(20),e(10,2));
end output;

end sample;

Listing 2–1. SAMPLE PL/I Program

Every PL/I program must have a main procedure block. Although you can
separately develop and compile external procedures that can be linked
to and called from a main procedure, there can be only one main
procedure block in a program. In Listing 2-1, the first two statements,
together with the last statement, determine the outermost, or main
block of the program.

2.4 PL/I Blocks
In PL/I a block can have its own local environment, and possibly an
environment inherited from a containing block. A containing block is
any block that contains another block. For example, in Listing 2-1 the
DO-group inherits the environment of the main procedure block. However,
the BEGIN block has its own local environment, even though it is
contained in the main procedure block.

In PL/I there are two types of blocks:

• PROCEDURE blocks

• BEGIN blocks

You can nest either type of block. This means that you can put one
block inside another, but the blocks cannot overlap. The essential
difference between a PROCEDURE block and a BEGIN block is the way that
PL/I executes each block in the overall program.

PL/I executes BEGIN blocks as they are encountered in the normal
sequence of statements in the program. A BEGIN block ends when its

PL/I Programmer's Guide 2.5 Procedures

2-3

corresponding END statement is encountered or when control passes
outside the block. When control reaches a BEGIN block, the statements
inside the block execute sequentially. Usually, when control leaves the
block, it simply passes to a containing block or goes to the next
sequential block.

PL/I ignores PROCEDURE blocks as they are encountered in the usual
sequence of statements in the program. Control only passes to and
enters a PROCEDURE block when the program invokes the procedure with a
CALL statement or a function reference. A PROCEDURE block is active
when the statements inside the block are executing. When the statements
inside the procedure finish executing, the PROCEDURE block returns
control to the point of the call.

For this reason, you can place a procedure anywhere in a program. It
is good programming practice to put all procedures at the bottom of the
main program. This makes debugging and maintaining a program easier.

2.5 Procedures
Every procedure consists of a procedure name, procedure header, the
procedure body of zero or more statements, and an end statement.
Figure 2-1 shows the components of the main procedure in the SAMPLE
program.

Figure 2–1. PL/I Procedure Components

If you nest procedures, they inherit the environment of containing
blocks. However, any variable that you declare in a containing block
can be redeclared, with local attributes, in the nested procedure.

There are two general types of procedures in PL/I:

• subroutine procedures

• function procedures

You use the CALL statement to invoke a subroutine procedure. A
subroutine procedure performs a specific task, and optionally returns
values to the invoking procedure.

You invoke a function procedure by making a function reference. A
function reference is simply using the name of the function in a
statement. PL/I evaluates the function reference and replaces it with a
scalar value at the point of the reference.

Procedures are either internal or external in relation to the main
procedure. An internal procedure is contained in the body of the main
procedure, while external procedures are written and compiled

PL/I Programmer's Guide 2.6 DO-groups

2-4

separately from the main program. To make an external procedure known
to the main procedure, you must declare the procedure name as an entry
constant (see Section 3.1.3). You must also link the external procedure
to the main procedure after both are compiled. All the procedures in
the SAMPLE program are internal to the main procedure.

2.6 DO-groups
The DO-group is similar to the BEGIN block. There are several forms of
the DO-group, and they are executable statements because they influence
the flow of control. However, they are also considered structural
statements because they define logical units.

Listing 2-1 illustrates the simplest form of the DO-group. It looks
like a BEGIN block, but there is a crucial difference. Although a DO-
group binds all the statements in its body into one logical unit, it
cannot define a new environment. A DO-group cannot define new variables
whose environment is limited to the body of the DO-group.

A DO-group can bind only executable statements. However, a BEGIN block
can bind both declarative statements and executable statements. The
environment of a DO-group is determined by the environment of the block
where it occurs.

References: LRM Sections 2.1 to 2.19, 8.1 to 8.2

End of Section 2

Section 3

3-1

3 Declarations
You use declarative statements to specify the data items you want to
manipulate with the executable statements in your program. PL/I has a
rich variety of data types. In addition to arithmetic and string data,
PL/I supports pointer, label, and entry data, which are generally not
available in other languages. Table 3-1 shows the PL/I data types
divided into categories and subcategories.

Category Subcategory
FIXED BINARY
FLOAT BINARY

Arithmetic

FIXED DECIMAL
CHARACTERString
BIT
Label Variable
Label Constant
Entry Variable

Control

Entry Constant
Pointer POINTER

File VariableFile
File Constant
ArraysData Aggregates
Structures
SubroutinesProcedures
Functions

Table 3–1 PL/I Data Types

All declarative statements specify either data constants or data
variables. You must explicitly declare all data variables in a DECLARE
statement, but data constants are usually declared implicitly by their
occurrence in an executable statement. A PL/I variable is defined by an
identifier name. The name can consist of up to thirty-one alphanumeric
characters or underscores. The first character must be a letter.

Usually, declarative statements, whether explicit or implicit, result
in a specific allocation of storage for the data item declared. The
compiler determines the amount of storage required for the type of
data, and associates the item with this storage. BASED variables are
an exception because they do not necessarily force an allocation of
storage (see Section 4.5).

3.1 Scalar Data
There are two main kinds of data: scalar, or single, data items, and
aggregate, or multiple, data items. Scalar data types are the
fundamental data types of the language.

3.1.1 Arithmetic Data
You use arithmetic data for direct numerical calculation. PL/I provides
several types of arithmetic data, so you can match the data to the
application.

PL/I Programmer's Guide 3.1 Scalar Data

3-2

3.1.1.1 FIXED BINARY
You can use FIXED BINARY data to represent integers. PL/I internally
represents this data type in two's complement binary form. The
precision of a FIXED BINARY number is the number of bits used to
represent it, independent of the sign. PL/I uses from 1 to 15 bits, so
it can represent integers in the range from -32768 to +32767.

3.1.1.2 FLOAT BINARY
You can use FLOAT BINARY data to represent very small or very large
numbers. FLOAT BINARY data has a binary fractional part (called the
mantissa) , a binary exponent, and a sign. PL/I supports both single-
precision and double-precision FLOAT BINARY numbers. The precision of a
FLOAT BI14ARY number is the number of bits in the mantissa.

Single-precision numbers can have from 1 to 24 bits, while the exponent
part is always represented by 8 bits. The maximum range of single-
precision FLOAT BINARY numbers in decimal is approximately 10-39 to
1038.

Double-precision numbers can have from 24 to 53 bits, while the
exponent has 11 bits. The maximum range of double-precision FLOAT
BINARY numbers in decimal is approximately 10-308 to 10 308

3.1.1.3 FIXED DECIMAL
You can use FIXED DECIMAL data to represent numbers with a fixed
decimal point. You can also use FIXED DECIMAL data to represent
integers. Internally, PL/I represents FIXED DECIMAL data in binary
coded decimal (BCD) digits.

FIXED DECIMAL numbers have both a precision and scale factor. The
precision is the total number of decimal digits used to represent the
number. The scale factor is the number of decimal digits to the right
of the decimal point.

In PL/I, the precision of a FIXED DECIMAL number can vary from one to
fifteen, while the scale factor can vary from zero to fifteen. This
arithmetic data type is particularly useful for commercial
calculations, which require exact representations of dollars and cents
and cannot accept the truncation errors of binary arithmetic.

You declare an arithmetic data variable in a declaration statement of
one of the following forms, where p is the precision and q is the scale
factor.

Statement:

DECLARE identifier FIXED BINARY[(p)];

Example:

declare index-counter fixed binary(7);

Statement:

DECLARE identifier FLOAT BINARY[(p)];

Example:

declare pi float binary(53);

Statement:

PL/I Programmer's Guide 3.1 Scalar Data

3-3

DECLARE identifier FIXED DECIMAL[(pf,ql)];

Example:

declare base_pay fixed decimal(5,2);

Note: The precision and scale factor are optional. If you omit them,
PL/I supplies default values.

You should use binary arithmetic for most numerical work, because it is
faster and uses the least storage. If you are doing scientific work,
PL/I has a complete library of built-in mathematical functions which
includes the trigonometric and the hyperbolic functions.

3.1.2 String Data
The ability to manipulate string variables is one of the most useful
features of PL/I. PL/I has a complete set of built-in functions that
you can use to manipulate string data. You declare a string variable to
be either a bit string or a character string in a declaration of one of
the following forms:

Statement:

DECLARE identifier CHARACTER[(n)];

Example:

declare alphabet character(26);

Statement:

DECLARE identifier CHARACTER[(n)] VARYING;

Example:

declare state character(20) varying;

Statement:

DECLARE identifier BIT[(n)];

Example:

declare flag bit(l);

The VARYING attribute means that the character string can vary in
length, but cannot exceed the value of n. For CHARACTER variables, the
value of n can be between 0 and 254. If you want to manipulate longer
strings, you can use one-dimensional arrays.

Character-string constants are implicitly declared by their occurrence
in a program. You indicate a character-string constant by enclosing it
in single apostrophes. If you want to include an apostrophe in the
string, you must precede it with an extra apostrophe. PL/I also allows
you to include control characters in a character string.

The following are examples of character strings:

'Ada Lovelace'
'^g ^g Input Error'
'Can''t Read Previous Line'

Bit-string variables cannot have the VARYING attribute, and the length
of a bit string cannot exceed sixteen. PL/I allows you to specify bit-
string constants in several different formats. Each format corresponds

PL/I Programmer's Guide 3.1 Scalar Data

3-4

to a different base, which is the number of bits used to represent the
item. The formats for bit-string constants are

• base 2 (B or B1 format)

• base 4 (B2 format)

• base 8 (B3 format)

• base 16 (B4 format)

In each of the formats, you write the bit-string constant as a string
of numeric digits for the desired base, enclosed in single apostrophes
and followed by the format type. The following are examples of the four
formats:

'101111'B equals 101111
'101111'B1 equals 101111
'233'B2 equals 101111
'57'B3 equals 101111
'2F'B4 equals 00101111

3.1.3 Control Data
There are two types of control data:

• LABEL data

• ENTRY data

LABEL data allows you to reference individual statements in your
program. PL/I not only allows individual statements to have labels, it
also allows you to declare label variables. This means that you can
manipulate labels in your program like any other valid data items.

The value of a label variable is always a label constant, implicitly
defined and declared by its occurrence as a label of a statement in the
program. PL/I allows you to subscript label constants. You can also
declare arrays of label variables.

You can use label variables to manipulate the flow of control between
logical units of a program. It is good programming practice to do this
without using GOTO'S and labels.

The following program is a whimsical example of label variables.

chase_your_tail:
procedure options(main);
declare

wherever label;

there:
wherever = here;

here:
wherever = there;

goto wherever;

end chase_your_tail;

Listing 3–1. Example of Label Variables

PL/I also supports a powerful data type called ENTRY data. ENTRY data
allows you to reference procedures just like any valid data item. You

PL/I Programmer's Guide 3.1 Scalar Data

3-5

can declare an entry variable then assign it a value. The value of an
entry variable is an entry constant.

Entry constants are the labels of procedures, rather than labels of
executable statements. An entry constant is implicitly declared by its
appearance as a label to an internal procedure.

When you declare an entry variable, you must explicitly define the type
of entry constant that the variable can assume. When you explicitly
declare an entry constant, you must declare it with the same attributes
as the procedure it references.

The modules shown in Listing 3-1 illustrate these concepts. Listing 3-
la shows an external procedure called a. Listing 3-lb shows the program
CALL, that references a. In CALL, f is an entry variable that assumes
three different constant values. To create a program, you compile each
module separately then link them together.

procedure(x) returns(float); /* external procedure
declare x float;
return(x/2);

end a;

Listing 3–2 External Procedure A

call:
procedure options(main);
declare

f(3) entry(float) returns(float) variable,
a entry(float) returns(float); /* entry constant /*

declare
i fixed, x float;

f(l) a;
f(2) b;
f(3) c;

do i = 1 to 3;
put skip list('Type X')
get list(x);
put list('f(',i,')=',f(i)(x));

end;
stop;

b:
procedure(x) returns(float); /* internal procedure
declare x float;
return (2*x + 1);

end b;

c:
procedure(x) returns(float); /* internal procedure
declare x float;
return(sin(x));
end c;

end call;

Listing 3–3 The CALL Program

PL/I Programmer's Guide 3.2 Data Aggregates

3-6

3.1.4 Pointer Data
Pointer data allows you to manipulate the storage allocated to
variables. The value of a pointer variable is the address of another
variable.

3.1.5 File Data
File data items describe and provide access to the data associated with
an external device. File data items are either file constants or
variables. You must always assign a file constant to a file variable
before you access the data in the file.

You declare file data in a declaration statement in one of the
following forms:

Statement:

DECLARE identifier FILE;

Example:

declare current_transaction file;

Statement:

DECLARE identifier FILE VARIABLE;

Example:

declare f(2) file variable;

The executable statements used for file access determine the file
attributes. (Section 4.3 describes file-handling and I/O operations.)

3.2 Data Aggregates
A data aggregate is a combination of data types that forms a data type
on a higher level. There are two kinds of aggregates in PL/I:

• arrays

• structures

3.2.1 Arrays
An array is a subscripted collection of data items of the same data
type. PL/I allows arrays of arithmetic values, character strings, bit
strings, label constants, entry constants, pointers, files, or
structures (see Section 3.2.2).

The following are examples of array declarations:

declare test_scores(100);
declare A(4,5);
declare A(1:4,2:5,0:10);

You make direct references to individual elements of an array by using
a subscripted variable reference. PL/I also allows you to make cross-
sectional references, with the restriction that the reference must
specify a data component whose storage is connected. For example,
using the following declarations:

PL/I Programmer's Guide 3.2 Data Aggregates

3-7

declare A(5,2) fixed binary;
declare B(5,2) fixed binary;

you can visualize the arrays pictured in Figure 3-1:

Figure 3–1. Arrays

In this example, A and B are identical in size and attributes.
Therefore, an assignment such as

A(3) = B(4);

is valid because the cross-sectional reference specifies connected
storage.

3.2.2 Structures
A structure is a very different type of data aggregate than an array. A
structure is hierarchical, much like a tree, where the leaves of the
tree, called nodes, can be various PL/I data types.

Each node of the tree, beginning with the root, has a name and a level
number. The level number indicates the level of each node in relation
to the root. The following example illustrates a structure declaration.

declare
1 employee,

2 name address,
3 name,

4 first character(10),
4 middle initial character(l),
4 last character(20),

3 address,
4 street character(40),
4 city character(10),
4 state character(2),
4 zip_code character(5),

2 position,
3 department no character(3),
3 job - title character(20),

2 salary fixed decimal(8,2),
2 number_of_dependents fixed,
2 health_plan bit(l),
2 date-hired character(B);

Listing 3–4. Example Structure Declaration

Figure 3-2 illustrates the hierarchy of levels that corresponds to the
declaration.

1

5

4

3

2

21

A

21

1

5

4

3

2

B

PL/I Programmer's Guide 3.2 Data Aggregates

3-8

Figure 3–2. Structure Declaration Hierarchy

Nodes on each level can also determine a structure. Such a substructure
is a member of the main structure. You can give the BASED attribute to
the main structure with the result that all the members of the
structure receive the attribute.

Structures are powerful tools because they enable you to group
logically related data items that might not have the same data type.
Thus, structures allow you to characterize and manipulate logical
objects in your program to more closely resemble real data.

References: LRM Sections 3.1 to 3.6, 5.1 to 5.5

End of Section 3

employee name_address first

middle_initial

last

name

address street

city

state

zip_code

position department_no

job_title

salary

number_of_dependents

health_plan

date_hired

Section 4

4-1

4 Executable Statements
The category of executable statements is divided into several
subcategories based on the type of function that the statement
performs. The subcategories are

• assignment statements

• sequence control statements

• I/O and file-handling statements

• memory management statements

• condition processing statements

• preprocessor statements

• null statements

4.1 Assignment Statements
An assignment statement places the value of an expression into the
storage location associated with a variable.

An expression is a combination of operators, operands, function
references, and parentheses that control the order of evaluation of the
expression.

In PL/I, the assignment statement has the form:

variable reference = expression;

An expression in PL/I can be fairly complicated. The simplest type of
variable reference is instantiating the variable name, which means to
assign the variable a specific value. A variable reference can also be
a reference to a data aggregate, or to a component of the aggregate. If
the variable is BASED, a pointer-qualified reference might be required
(see Section 4.5.1).

PL/I also allows certain built-in functions such as UNSPEC and SUBSTR
to appear as targets on the left side of assignment statements. When
they appear as variables in this context, they are called pseudo-
variables.

Expressions can be computational. This means that the expression
involves arithmetic or string values of the various types and their
respective operators. Expressions can also be noncomputational,
involving comparisons of noncomputational data types such as labels,
entry constants, and pointers.

PL/I allows computational expressions of different data types, and
automatically performs conversion between the various types following a
standard set of default rules. You should become familiar with the
automatic conversion rules and the properties of the built-in
conversion functions (see Section 4 LRM).

The following sequence of code illustrates some simple examples of
assignment statements. These examples also illustrate some of the ways
you can reference a variable in PL/I. Such references can also occur in
expressions, although PL/I limits aggregate expressions to comparison
for equality.

PL/I Programmer's Guide 4.2 Sequence Control Statements

4-2

assign:
procedure options(main);
declare

p pointer,
i fixed binary(7),
r bit(16),
s bit(16) based,
(u,v) float binary(24),
A(5,2) character(2),
B(5,2) character(2),
C character(20),
1 W,

2 x fixed binary,
2 y bit(16),

1 Z,
2 x fixed binary,
2 y bit(16);

u = u + V; /* simple assignment
A = B; /* array aggregate assignment
A(3) = B(3); /* cross-sectional reference
w z; /* structure aggregate assignment
p s = (r = w.y); /* pointer-qualified reference
W.x = W.x + Z.X; /* partially-qualified aggregate reference
unspec(w.y) = unspec(A(5,1)); /* pseudo-variable reference
substr(C,i+1,3) = substr(C,10,3); /* pseudo-variable reference
A(2*i+l) BM; /* variable is expression

end assign;

Listing 4–1. Simple Examples Of Assignment Statements

4.2 Sequence Control Statements
You can use sequence control statements to alter the normal sequential
flow of control. In PL/I, sequence control statements perform
unconditional branching, conditional branching, iteration, branch and
return through procedure invocation, and a more unique construct called
condition processing.

4.2.1 Iteration
PL/I provides an extensive variety of iteration control in the various
forms of the DO statement. For example, you can perform iteration not
only with an arithmetic control variable, but also with a pointer
control variable that is moving through a linked list of pointers.

The following diagrams illustrate the basic forms of the DO statement
and the flow of control that they induce. The values e1, e2, e3, and e4
represent any scalar expressions.

PL/I Programmer's Guide 4.2 Sequence Control Statements

4-3

Figure 4–1. Forms of the DO Statement

PL/I Programmer's Guide 4.2 Sequence Control Statements

4-4

Figure 4-1. (continued)

4.2.2 Procedure Invocation
A branch and return occurs as the result of a procedure invocation. As
we have seen, in PL/I there are two types of procedures: subroutine
procedures and function procedures. There are two corresponding forms
of invocation.

You invoke a subroutine procedure with a CALL statement, but you invoke
a function procedure by using its name in an expression. You call a
subroutine procedure for a specific reason, such as altering the value
of variables passed to the procedure, or input and output. You always
invoke a function procedure in an expression to return a scalar data
item. In PL/I, both types of procedures can be recursive, which means
they can call themselves.

PL/I Programmer's Guide 4.2 Sequence Control Statements

4-5

There is an important distinction between a procedure definition and a
procedure invocation. A procedure definition is a declarative
statement; a procedure invocation is an executable statement. The data
items you pass to the procedure when you invoke it are called the
arguments. The arguments are distinguished from the parameters you give
in the procedure definition. Thus, the arguments are the parameters as
they are known in the invoking block, while the parameters are the
corresponding parameters as they are known in the invoked block, the
procedure.

4.2.3 Parameter Passing
In PL/I, you can pass parameters by reference or by value. You pass
them by reference if the arguments and the parameters share storage.
You pass them by value if the value of the parameter is held as a local
copy of the value of the argument.

Under PL/I rules, the parameter and argument always share storage if
they have identical attributes. If the argument is an expression, or if
its data attributes do not match those of the corresponding parameter,
then the parameter is passed by value. PL/I passes the parameter by
value if you enclose the parameter in parentheses in the procedure
header statement of the procedure definition.

A procedure is an independent logical unit that performs a specific
function. If you carefully define the specific function that the
procedure performs and the parameters that it expects from the invoking
environment, you can divide the design, coding, and debugging of the
overall program into separate units.

If you pass a parameter by reference to conserve storage, be aware that
the invoked procedure can change the value of a variable outside its
local environment. If you want to assure that the procedure does not
change a variable outside its local environment, then you must pass the
parameters by value and use extra storage.

Parameter passing is a trade-off between the amount of storage
available on your system and the level of modularity and isolation you
want in your program. There are three alternatives for parameter
passing, characterized as the high, middle, and low road. The skeletal
program in Listing 4-1 illustrates the concepts they represent.

In the low road, you pass by reference but pay close attention to the
possible side effects that can result. The advantage of this method is
that it conserves storage.

In the middle road, you pass by value, enclosing the argument in
parentheses at the point of invocation in the CALL statement or
function reference.

In the high road, you declare a duplicate variable for each parameter
in the procedure definition. You then assign the corresponding
parameter to its duplicate, and use the duplicate as a local copy in
the procedure. Equally you can enclose the parameter in parentheses in
the procedure header. The high road is least efficient in its use of
storage.

main:
procedure options(main);
declare

PL/I Programmer's Guide 4.2 Sequence Control Statements

4-6

a float binary;

call low-sub(a); /* pass by reference
call middle-sub((a)); /* pass by value
call high-sub(a); /* pass by reference

low sub:
procedure(x);
declare

x float binary;

end low-sub;

middle-sub:
procedure(x);
declare

x float binary;

end middle-sub;

high_sub:
procedure(x);
declare

(x,my_x) float binary;
my-x = x; /* reassign using local variable

end high_sub;
end main;

Listing 4–2. Parameter Passing

4.2.4 Conditional Branch
PL/I provides a conditional branch in the form of an IF statement. The
conditional branch has one of the following forms:

IF condition THEN group
IF condition THEN group-1 ELSE group-2

where the condition is a scalar expression that PL/I evaluates and
reduces to a single value, and the groups are either single statements,
DO-groups, or BEGIN blocks.

You can nest IF statements, in which case PL/I matches each ELSE with
the innermost unmatched IF-THEN pair. However, you can use null
statements following an ELSE to force an arbitrary matching of ELSE
statements with IF-THEN pairs. (See Section 4.7, "Null Statements.")

4.2.5 Unconditional Branch
PL/I provides an unconditional branch in the form of a GOTO statement.
The unconditional branch has one of the forms:

GOTO label constant;
GOTO label-variable;

Because PL/I is block-structured, certain rules apply to the use of the
GOTO. The target label must be in the same block containing the GOTO,
or in a containing block. You cannot transfer control to an inner
block.

PL/I Programmer's Guide 4.3 I/O and File-handling Statements

4-7

4.3 I/O and File-handling Statements
The executable I/O statements provide PL/I with a device- independent
input/output system that allows a program to transmit data between
memory and external devices. To understand the I/O statements, you must
first know about files and their attributes.

The collection of data elements that you transmit to or from an
external device is called the data set. The corresponding internal file
constant or variable is called a file.

As with other data items, you must declare files before you use them in
a program. A file declaration has the form:

DECLARE file-id FILE [VARIABLE];

where file id is the file identifier. If you do not include the
optional 7VARIABLE attribute, the declaration defines a file constant.
With the VARIABLE attribute, the declaration defines a file variable
that can take on the value of a file constant through an assignment
statement. You must assign a file constant to a file variable before
you can perform any I/O operations.

4.3.1 Opening Files
PL/I requires that a file be open before performing any I/O operations
on the data set. You can open a file explicitly by using the OPEN
statement, or implicitly by accessing the file with the following I/O
statements:

• GET EDIT

• PUT EDIT

• GET LIST

• PUT LIST

• READ

• WRITE

• READ Varying

• WRITE Varying

The general form of the OPEN statement is

OPEN FILE(file-id) [file-attributes];

where file-id is the file identifier that appears in a FILE declaration
statement, and file-attributes denotes one or more of the following:

• STREAM RECORD

• PRINT

• INPUT/OUTPUT/UPDATE

• SEQUENTIAL/DIRECT

• KEYED

• TITLE

PL/I Programmer's Guide 4.3 I/O and File-handling Statements

4-8

• ENVIRONMENT

• PAGESIZE

• LINESIZE

Multiple attributes on the same line are conflicting attributes, so you
can only specify one attribute. The first attribute listed is the
default attribute. All the attributes are optional; you can specify
them in any order.

A STREAM file contains variable length ASCII data. You can visualize it
as a stream of ASCII character data, organized into lines and pages.
Each line in a STREAM file is determined by a linemark, which is a
line-feed or a carriage return/line-feed pair. Each page is determined
by a pagemark, which is a form-feed. Generally, you must convert the
data in a STREAM file from character form to pure binary form before
using it. Some text editors automatically insert a line-feed following
each carriage return, but files that PL/I creates can contain line-
feeds without preceding carriage returns. In this case, PL/I senses the
end of the line when it encounters the line-feed.

A RECORD file contains binary data. PL/I accesses the data in blocks
determined by a declared record size, or by the size of the data item
you use to access the file. A RECORD file must also have the KEYED
attribute, if you use FIXED BINARY keys to directly access the fixed-
length records.

The PRINT attribute applies only to STREAM OUTPUT files. PRINT
indicates that the data is for output on a line printer.

For an INPUT file, PL/I assumes that the file already exists when it
executes the OPEN statement. When it executes the OPEN statement for an
OUTPUT file, PL/I also creates the file. If the file already exists,
PL/I first deletes it, then creates a new one.

You can read from and write to an UPDATE file. PL/I creates an UPDATE
file, if it does not exist, when executing the OPEN statement. An
UPDATE file cannot have the STREAM attribute.

You access SEQUENTIAL files sequentially from beginning to end, but you
access DIRECT files randomly using keys. PL/I automatically gives
DIRECT files the RECORD attribute. PL/I also requires you to declare
all UPDATE files with the DIRECT attribute, so you can locate the
individual records.

A KEYED file is simply a fixed-length record file. The key is the
relative record position of the record within the file based upon the
fixed record size. You must use keys to access a KEYED file. PL/I
automatically gives KEYED files the RECORD attribute.

The TITLE(c) attribute defines the programmatic connection between an
internal filename and an external device or a file in the operating
system's file system. If you omit the TITLE attribute, PL/I assigns the
default title file id.DAT, where file-id is the file identifier
specified in the OPFFN statement.

The character string c can specify a physical device such as a console
or printer (see Section 10.2, LRM) . If the character string c
specifies a disk file, it must be in the form,

d:filename.typ;password

PL/I Programmer's Guide 4.3 I/O and File-handling Statements

4-9

where the drive code d, the filetype, and the password are all
optional. You must specify a filename. The filename cannot be an
ambiguous wildcard reference.

You can also specify $1 or $2 for both the filename and filetype. $1
gets the first default name from the command line, $2 gets the second
default name.

The ENVIRONMENT attribute defines fixed record sizes for RECORD files,
internal buffer sizes, the file open mode, and the level of password
protection. You can open a file in one of three modes: Locked, Read-
Only, or Shared. Locked is the default mode, and means that no other
user can access the file while it is open. Read-Only means that other
users can access the file, but only to read it.

Shared mode means that other users can also simultaneously open and
access the file. You can use the built-in LOCK and UNLOCK functions to
lock and unlock individual records in the file, so there are no
collisions with other users.

If you assign a password to a file, you can also assign the level of
protection that the password provides. The levels of protection are:
Read, Write, and Delete. Read means that you must supply the password
to read the file. Write means that you can read the file, but you must
supply the password to write to the file. Delete means that you can
read the file or write to it, but you cannot delete the file without
the password.

Note: File password protection and record locking/unlocking for
individual records is not available in all implementations. See
Appendix A in the LRM.

The LINESIZE attribute applies only to STREAM files, and defines the
maximum number of characters in the input or output line length. The
PAGESIZE attribute applies only to STREAM OUTPUT files, and defines the
number of lines per page on output.

4.3.2 File Attributes
PL/I controls all file transactions through an internal data structure
called the File Parameter Block (FPB). The FPB contains information
about the file, such as whether it is open or closed, the external
device or file associated with the file, the current line and column,
or record being accessed, and the internal buffer size. The FPB also
contains a File Descriptor that describes the file's attributes. These
attributes in turn describe the allowable methods of access. Table 4-1
summarizes the valid attributes that you can assign to a file, either
through an explicit OPEN statement, or implicitly by an I/O access
statement.

Table 4–1 PL/I Valid File Attributes

STREAM INPUT ENVIRONMENT TITLE LINESIZE
STREAM OUTPUT ENVIRONMENT TITLE LINESIZE PAGESIZE
STREAM OUTPUT PRINT ENVIRONMENT TITLE LINESIZE PAGESIZE
RECORD INPUT SEQUENTIAL ENVIRONMENT TITLE
RECORD OUTPUT SEQUENTIAL ENVIRONMENT TITLE
RECORD INPUT SEQUENTIAL KEYED ENVIRONMENT TITLE
RECORD OUTPUT SEQUENTIAL KEYED ENVIRONMENT TITLE

PL/I Programmer's Guide 4.3 I/O and File-handling Statements

4-10

RECORD INPUT DIRECT KEYED ENVIRONMENT TITLE
RECORD OUTPUT DIRECT KEYED ENVIRONMENT TITLE
RECORD UPDATE DIRECT KEYED ENVIRONMENT TITLE

4.3.3 Implied Attributes
If you do not open a file with explicit attributes, PL/I determines the
attributes from the type of I/O statement you use to access the file.
Table 4-2 summarizes the attributes implied by each of the I/O
statements. In the following table, f is a file constant, x is scalar
or aggregate data type that is not CHARACTER VARYING, and k is a FIXED
BINARY key value.

Table 4–2 File Attributes Associated With I/O Access

I/O Statement Implied Attributes

GET FILE(f) LIST STREAM INPUT
PUT FILE(f) LIST STREAM OUTPUT
GET FILE(f) EDIT STREAM INPUT
PUT FILE(f) EDIT STREAM OUTPUT
READ FILE(f) INTO(v) STREAM INPUT
WRITE FILE(f) FROM(v) STREAM OUTPUT
READ FILE(f) INTO(x) RECORD INPUT SEQUENTIAL
READ FILE(f) INTO(x) KEYTO(k) RECORD INPUT SEQUENTIAL KEYED

ENVIRONMENT(Locked,Fixed(i))
READ FILE(f) INTO(x) KEY(k) RECORD INPUT DIRECT KEYED

ENVIRONMENT(Locked,Fixed(i))
RECORD UPDATE DIRECT KEYED
ENVIRONMENT(Locked,Fixed(i))

WRITE FILE(f) FROM(x) RECORD OUTPUT SEQUENTIAL
WRITE FILE(f) FROM(x) KEYFROM(k) RECORD OUTPUT DIRECT KEYED

ENVIRONMENT(Locked,Fixed(i))
RECORD UPDATE DIRECT KEYED
ENVIRONMENT(Locked,Fixed(i))

4.3.4 Closing Files
The CLOSE statement disassociates the file from the external data set.
The form of the CLOSE statement is

CLOSE FILE(file-id);

where file id is a file constant for which PL/I clears the internal
buffers, records all the data on the disk, and closes the file at the
operating system level. You can subsequently reopen the same file using
the OPEN statement. PL/I automatically closes all open files at the end
of the program or upon execution of a STOP statement.

4.3.5 File Access Methods
PL/I supports two methods of file access:

• STREAM I/O

• RECORD I/O

There are three different kinds of STREAM I/O:

PL/I Programmer's Guide 4.3 I/O and File-handling Statements

4-11

• LIST-directed uses the GET LIST and PUT LIST statements, which
transfer a list of data items without any format specifications.

• Line-directed uses the READ and WRITE statements, which allow you to
access variable-length CHARACTER data in an unedited form. These
statements might not be available in other implementations of PL/I.

• EDIT-directed uses the GET EDIT and PUT EDIT statements, which allow
formatted access to character data items.

EDIT-directed I/O is similar to list-directed I/O except that it writes
data into particular fields of the output line, as described by a list
of format items. The data list specifies a number of values to write in
fixed fields defined by the format-list.

The format-list can contain two kinds of format items: data format
items and control format items. PL/I pairs each element of the data
list with an item in the format-list. The format item determines how
PL/I interprets the data element. PL/I executes control format items as
they are encountered in the format-list.

You can precede any format item with a positive integer constant value,
not exceeding 254, that determines the number of times to apply the
format item or group of format items.

4.3.6 Data Format Items
The following examples show the various format items you can use in a
GET EDIT or PUT EDIT statement.

A[(w)]

The A format reads or writes the next alphanumeric field whose width is
specified by w, with truncation or blank padding on the right. If you
omit w, the A format uses the size of the converted character data as a
field width.

B[n1[(w)]

The B format reads or writes bit-string values. n is the number of bits
used to represent each digit. w is the field width that you must
include on input.

E(w[,d])

The E format reads or writes a data item into a field of w characters
in scientific notation, with maximum precision allowed in the field
width. w must be at least 8.

F(w[,d])

The F format reads or writes fixed-point arithmetic values with a field
width of w digits, and d optional digits to the right of the decimal
point.

4.3.7 Control Format Items
LINE(ln)

Moves to the line specified by ln in the data stream before writing the
next data item.

COLUMN(nc)

PL/I Programmer's Guide 4.4 Condition-processing Statements

4-12

Moves to column position specified by nc in the data stream before
reading or writing the next data item. This can flush the current line.

PAGE

Performs a page eject for PRINT files.

SKIP[(nl))

Skips nl lines before reading or writing the next data item.

X(n)

Advances n blank characters into the data stream before reading or
writing the next data item.

R(fmt)

Specifies a remote format. This means that the format is specified
elsewhere in a FORMAT statement.

4.3.8 Predefined Files
PL/I has two predefined file constants called SYSIN, the console
keyboard, and SYSPRINT, the console output display. These files do not
need to be declared unless you make an explicit reference to them in an
OPEN or I/O statement.

SYSIN has the default attributes:

STREAM INPUT ENVIRONMENT(Locked,Buff(128)) TITLE('$CON') LINESIZE(80)
PAGESIZE(0)

SYSPRINT has the default attributes:

STREAM PRINT ENVIRONMENT(Locked,Buff(128)) TITLE('$CON') LINESIZE(80)
PAGESIZE(0)

4.4 Condition-processing Statements
PL/I has several features that make it ideal for applications
programming. One of these features is its capability for condition
processing. In most languages, the program cannot recover from run time
error conditions, such as an invalid data conversion—control reverts to
the operating system.

PL/I has various features that allow you to intercept run-time errors,
program a response, and recover control. These features are
collectively called condition processing.

PL/I provides condition processing with these executable statements:

• ON

• REVERT

• SIGNAL

4.4.1 The ON Statement
You use the ON statement to intercept and program a response to a run-
time condition signaled by the system, or by the execution of a SIGNAL
statement. The ON statement is an executable statement that defines the
response. It has the form:

PL/I Programmer's Guide 4.4 Condition-processing Statements

4-13

ON condition-name on-body;

where condition-name is one of the major condition categories, with or
without a subcode (see Section 4.4.4). The on-body is a PL/I statement
or statement group that you process when the condition occurs.

If the subcode is not present, then PL/I processes the ON statement
when any of the subcode conditions occur. This is equivalent to subcode
0. The file conditions must have a file reference describing the file
for which the condition is signaled.

4.4.2 The REVERT Statement
You use the REVERT statement to disable the ON condition set by the ON
statement. This is important because you can have only sixteen ON
conditions set without overflowing the condition code area. If overflow
happens, the PL/I run-time system stops processing. The form of the
REVERT statement is

REVERT condition-name;

PL/I automatically reverts an ON condition set in a given block when
control leaves the environment of that block.

4.4.3 The SIGNAL Statement
The SIGNAL statement allows you to activate the response for a
condition. The form of the SIGNAL statement is

SIGNAL condition-name;

4.4.4 Condition Categories
The condition categories describe the various conditions that the run-
time system can signal or that your program can signal by executing a
SIGNAL statement.

There are nine major condition categories with subcodes, some of which
are system-defined, and some of which you can define yourself. Table
4-3 shows the predefined subcodes.

Table 4–3 PL/I Condition Categories and Subcodes

Type Meaning

ERROR

ERROR(0) Any ERROR subcode
ERROR(l) Data conversion
ERROR(2) I/O Stack overflow
ERROR(3) Function argument invalid
ERROR(4) I/O Conflict
ERROR(5) Format stack overflow
ERROR(6) Invalid format item
ERROR(7) Free space exhausted
ERROR(8) Overlay error, no file
ERROR(9) Overlay error, invalid drive
ERROR(10) Overlay error, size
ERROR(11) Overlay error, nesting

PL/I Programmer's Guide 4.4 Condition-processing Statements

4-14

Type Meaning

ERROR(12) Overlay error, disk read error
ERROR(13) Invalid OS call
ERROR(14) Unsuccessful Write
ERROR(15) File Not Open
ERROR(16) File Not Keyed

FIXEDOVERFLOW

FIXEDOVERFLOW(0) Any FIXEDOVERFLOW subcode

OVERFLOW

OVERFLOW(0) Any OVERFLOW subcode
OVERFLOW(l) Floating-point operation
OVERFLOW(2) Float precision conversion

UNDERFLOW

UNDERFLOW(0) Any UNDERFLOW subcode
UNDERFLOW(l) Floating-point operation
UNDERFLOW(2) Float precision conversion

ZERODIVIDE

ZERODIVIDE(0) Any ZERODIVIDE subcode
ZERODIVIDE(l) Decimal divide
ZERODIVIDE(2) Floating-point divide
ZERODIVIDE(3) Integer divide

ENDFILE

UNDEFINEDFILE

KEY

ENDPAGE

In addition to these predefined system condition subcodes, you can
define certain subcodes for a specific application, test for the
desired condition, and then use the SIGNAL statement to signal the
condition.

4.4.5 Condition Processing Built-in Functions
PL/I provides certain built-in functions to help handle conditions when
they occur. These functions are

• ONCODE

• ONFILE

• ONKEY

• PAGENO

• LINENO

The ONCODE function returns the subcode of the most recently signaled
condition, or zero if no condition has been signaled.

The ONFILE function returns the internal filename of the file involved
in an I/O operation that signaled a condition.

The ONKEY function returns the value of the last key involved in an I/O
operation that signaled a condition.

PL/I Programmer's Guide 4.5 Memory Management Statements

4-15

The PAGENO and LINENO functions return the current page number and line
number for a PRINT file named as the parameter.

4.5 Memory Management Statements
Every variable in a PL/I program has a storage-class attribute. The
storage class determines how and when PL/I allocates storage for a
variable, and whether the variable has its own storage or shares
storage with another variable.

PL/I supports four different storage classes:

• AUTOMATIC (the default in PL/I)

• BASED

• PARAMETER

• STATIC

PL/I treats AUTOMATIC storage as STATIC storage, except in procedures
marked as RECURSIVE. The compiler allocates storage for STATIC
variables prior to execution, and the storage remains allocated as long
as the program is running. You can use the INITIAL attribute to assign
initial constant values to STATIC data items.

If a variable appears in a parameter list, the compiler assigns it the
PARAMETER storage class. Storage for parameters is allocated by the
calling procedure when it passes the parameters to the called
procedure. (See Appendix A in the LRM.)

Note: Only STATIC variables can have the INITIAL attribute, to be
compatible with the ANSI Subset G PL/I standard.

Storage-class attributes are properties of scalars, arrays, major
structure variables, and file variables. You cannot assign storage
class attributes to entry names, file constants, or members of data
aggregates.

4.5.1 BASED Variables and Pointers
The compiler does not allocate storage for variables with the BASED
storage class. A based variable is a variable that describes storage
that you must access with a pointer. The pointer is the location where
the storage for the based variable begins, and the based variable
itself determines how PL/I interprets the contents of the storage
beginning at that location. Thus, the pointer and the based variable
taken together are essentially equivalent to a nonbased variable.

You can visualize a based variable as a template that overlays the
storage specified by its base. Thus, a based variable can refer to
storage allocated for the based variable itself, or to storage
allocated for other variables.

The format of the BASED variable declaration is

DECLARE name BASED[(pointer-reference)];

For example,

declare A(5,5) character(10) based;
declare bit-vector bit(8) based(p);

PL/I Programmer's Guide 4.5 Memory Management Statements

4-16

where the pointer reference is an unsubscripted POINTER variable, or a
function call, with zero arguments, that returns a POINTER value.

A pointer-qualified reference can be either implicit or explicit. When
you declare a variable as BASED without a pointer reference, then each
reference to the variable in the program must include an explicit
pointer qualifier of the form:

pointer-exp -> variable

When you declare a variable as BASED with a pointer reference, then you
can reference it without a pointer qualifier. The run-time system
reevaluates the pointer reference at each occurrence of the unqualified
variable using the pointer expression given in the variable
declaration.

The following code sequence illustrates the concept of based variables.

declare
p pointer,
a character(128),
b(128) character(l) based(p),
c(0:127) bit(8) based(p),
d(64) bit(16) based(p),
e(8,0:15) bit(8) based(p);

p = addr(a);

In this example, after pointer p is set to the address of a, each of
the variables b, c, d, and e refers to the same 128 bytes of storage
occupied by the variable a, although they do so in different ways.
Thus, the variables b, c, d, and e overlay the variable a.

There is one important point to consider here. The overlays illustrated
above depend on the method a particular processor uses to internally
represent and store the data items. Such code makes a program
implementation-dependent. For example, in implementations other than
PL/I, the internal representation of an array could include some header
bytes in addition to the bytes used to represent the data elements. In
each case, you must investigate the internal representation before
using based variables to overlay other data types.

4.5.2 The ALLOCATE Statement
The ALLOCATE statement explicitly allocates storage for a BASED
variable. The ALLOCATE statement takes the form:

ALLOCATE based variable SET(pointer variable);

For example,

allocate input_buffer set(buffer_ptr);

The run-time system obtains sufficient memory for the based variable
from the free storage area and then sets the pointer variable to the
address of this memory segment.

4.5.3 The FREE Statement
The FREE statement releases the storage allocated to a BASED variable.
The FREE statement takes the form:

FREE [pointer variable] based variable;

PL/I Programmer's Guide 4.6 Preprocessor Statements

4-17

For example,

free inputbuffer;

Note: The pointer variable reference is optional if you declared the
based variable with a pointer reference.

The following code sequence illustrates the use of the ALLOCATE and
FREE statements.

declare
(p,q,r) pointer,
a character based,
b fixed based(r);

allocate a set(p);
allocate b set(r);
allocate a set (q)

free p a;
free q a;
free b;

4.6 Preprocessor Statements
Preprocessor statements allow you to include other files and modify the
source program at compile time.

The %INCLUDE statement copies PL/I source from another file at compile
time. The %INCLUDE statement is useful for filling in declarations that
are repeated throughout a program. The %INCLUDE statement takes the
form:

%INCLUDE 'filespec';

For example,

%include 'fcb.dcl';

The %REPLACE statement allows you to replace identifiers by literal
constants throughout the text of a PL/I program at compile time. The
%REPLACE statement takes the form:

%REPLACE identifier BY literal constant;

You can put more than one identifier-constant pair in a single %
REPLACE statement by separating the pairs with commas.

For example,

%replace
true by '1'b,
false by '0'b;

4.7 Null Statements
The null statement does not perform any action. Its form is simply:

You can use the null statement as the target of a THEN or ELSE clause
in an IF statement. In the following example,

if x > average then
goto print_it;

else;

PL/I Programmer's Guide 4.7 Null Statements

4-18

no action takes place when x is less than or equal to average, and the
sequence of execution continues at the statement following the ELSE. As
another example, consider this statement:

on endpage(report-file);

Here, no action takes place when PL/I processes the ON-unit for
ENDPAGE, and the I/O statement that signaled the condition continues.

You can also use null statements to give more than one label to the
same executable statement. For example,

A:;
B: statement-1;
statement-2;

References: LRM Sections 2.7 to 2.9, 2.15, 7, 8, 9, 10.1 to 10.3, 10.7
to 10.8, 11.1, 11.3

End of Section 4

Section 5

5-1

5 Programming Style
PL/I is a free-format language. You can write programs without regard
to column positions and specific line formats. Each line can be up to
120 characters long terminated by a carriage return, and logically
connected to the next line in sequence. The compiler simply reads the
source program from the first through the last line, disregarding line
boundaries.

In exchange for this freedom of expression, you should adhere to some
stylistic conventions, so that your programs can be easily read and
understood by other programmers. A professional program not only
produces the correct output, but is consistent in form and divided into
logical segments that are easy to comprehend. A logically structured
program is also much easier to debug. A well constructed program is
appreciated for its form and its function.

There are many stylistic conventions in use by individual programmers.
The following rules illustrate one set of conventions that are used
throughout the examples in this guide. Listing 5-1 illustrates the
conventions presented in this section.

5.1 Case
You can write PL/I programs in either upper- or lowercase. Internally,
the PL/I compiler translates all characters, outside of string quotes,
to uppercase. Using the use of lowercase throughout programs generally
improves readability.

5.2 Indentation
Use indentation throughout your program to set off various declarations
and statements. To simplify indentation, the compiler expands tabs
(CTRL-I characters) to every fourth column position. Some text editors
expand tabs to multiples of eight columns, so the line appears wider
during the edit and display operations. The compiler issues the TRUNC
(truncate) error if the expanded line length exceeds 120 columns.

Program statements start at the outer block level in the first column
position. Each successive block level, initiated by a DO group, BEGIN,
or PROCEDURE block, starts at a new indentation level, four spaces or
one tab stop. Give statements in a group the same indentation level,
with procedure names and labels on a single line by themselves.

PL/I Programmer's Guide 5.2 Indentation

5-2

Original Page number 5-2 is missing. If you have it please send email
to bdlawrence@prodigy.net and I will insert.

mailto:bdlawrence@prodigy.net

PL/I Programmer's Guide 5.2 Indentation

5-3

information required to understand the overall purpose and operation of
your program. They also simplify the task of maintaining and updating
the code without introducing errors.

This program computes the largest of three
/* FLOAT BINARY numbers x, y, and z.

test:
procedure options(main);

declare
(a,b,c) float binary;

put list ('Type Three Numbers:
get list (a,b,c);
put list ('The Largest Value is',max3(a,b,c));

/* this procedure computes the largest of x, y, and z
max3: procedure4x,y,z) returns(float binary);

declare
(x,y,z,max) float binary;

if x > y then
x > z then

if max = x;
else

max = z;
else

if y > z then
max = y;

else
max = z;

return(max);
end max3;

end test;

Listing 5–1. PL/1 Stylistic Conventions

References: PL/I Command Summary

End of Section 5

Section 6

6-1

6 Using the System
Developing a PL/I program is a 3-step process:

1. Write the source file using any suitable text editor.
2. Compile the source file and generate the relocatable object file.
3. Link the relocatable object file with the Run-time Subroutine

Library to generate an executable command file.

PL/I is a compiled language. Consequently, if you make any change to
the source file, you must recompile the program. Try to divide large
programs into several small modules, compile each module separately,
then link them together. Small programs compile faster and use less
storage for the Symbol Table.

Figure 6-1 illustrates the development process.

Figure 6–1. PL/I Program Development

6.1 PL/1 System Files
When you receive your PL/I system, you should first make copies of all
the distribution disks. If you are unsure how to do this, read your
operating system documentation.

The contents of the distribution disks varies with the implementation.
The file RELNOTES.PRN on the Sample Program Disk describes the contents
of the files for your particular implementation.

Note: You have certain responsibilities when making copies of Digital
Research programs. Be sure you read your licensing agreement.

After you make back-up disks, load your compiler disk and type a DIR
command:

A>dir

PL/I Programmer's Guide 6.2 Invoking the Compiler

6-2

The directory contains several types of files, as shown in Table 6-1.

Table 6–1 PL/I System Files

Type Definition

CMD Executable command file (8086
implementations) , for example,
DEMO.CMD

COM Executable command file (8080
implementations) , for example,
DEMO.COM

DAT Default data filetype
DCL %INCLUDE file (data declarations)
EXE Executable command file (under IBM

DOS) , for example, DEMO.EXE
IRL Indexed Relocatable File, for

example PLILIB.IRL
L86 Library file (8086

implementations), for example,
PLILIB.L86

OBJ Relocatable object code file (8086
implementations), for example,
DEMO.OBJ

OVL PL/I Compiler Overlays (8080
implementations) , PLI0, PLI1, and
PLI2

OVR PL/I Compiler Overlays (8086
implementations) , PLI0, PLI1, and
PLI2

PLI PL/I source programs, for example,
DEMO.PLI

PRN Printer disk file; compiled
program listing on disk. Also
used for readable documentation
file

REL Relocatable object code file (8080
implementations), for example,
DEMO.REL

SYM Symbol Table File, for example
DEMO.SYM

Note: The only files that contain printable characters are the PLI
source programs, PRN printer listing files, and the SYM symbol table
files.

6.2 Invoking the Compiler
You invoke the PL/I compiler using a command of the general form:

pli filespec [$options]

where filespec designates the program to compile and can include an
optional drive specification. For example,

d:myfile.pli

PL/I Programmer's Guide 6.3 Compiler Operation

6-3

You need not specify the filetype because the compiler assumes type
PLI.

$options represent a list of parameters that you can optionally include
in the command line when compiling a program. These parameters enable
the various compiler options as shown in Table 6-2 on the following
page.

In each case, the single-letter option follows the $ symbol in the
command line. You can specify a maximum of seven options following the
dollar sign. The default mode using no options compiles the program but
produces no source listing and sends all error messages to the console.

Table 6–2 PL/I Compiler Options

Option Action Enabled

A Abbreviated listing. Disables the listing of
parameters and %INCLUDE statements during the
compiler's first pass.

B Built-in subroutine trace. Shows the Run-time
Subroutine Library functions that are called
by your PL/I program.

D Disk file print. Sends the listing file to
disk, using the filetype PRN.

I Interlist source and machine code. Decodes the
machine language code produced by the compiler
in a pseudo-assembly language form.

K Same as A.
L List source program. Produces a listing of the

source program with line numbers and machine
code locations (automatically set by the I
switch).

N Nesting level display. Enables a pass 1 trace
that shows exact balance of DO, PROCEDURE, and
BEGIN statements with their corresponding END
statements.

O Object code off. Disables the output of
relocatable object code normally produced by
the compiler.

P Page mode print. Inserts form-feeds every 60
lines, and sends the listing to the printer.

S Symbol Table display. Shows the program
variable names, along with their assigned,
defaulted, and augmented attributes.

6.3 Compiler Operation
The PL/I compiler reads source program files and generates a
relocatable, native code object file as output. PL/I is a 3-pass
compiler, with each pass a separate overlay. Pass 1 collects
declarations, and builds a Symbol Table used by subsequent passes.
Pass 2 processes executable statements, augments the Symbol Table, and
generates intermediate language in tree-structure form. Both passes
analyze the source text using recursive descent.

Pass 3 performs the actual code generation, and includes a
comprehensive code optimizer that processes the intermediate tree

PL/I Programmer's Guide 6.3 Compiler Operation

6-4

structures. Alternate forms of an equivalent expression are reduced to
the same form, and expressions are rearranged to reduce the number of
temporary variables. There is also a special-forms recognizer that
detects and matches approximately three hundred tree structures of
special interest. Special-forms recognition allows the compiler to
generate concise code sequences for many common statements.

Note: All the compiler overlays (PLI0, PLI1, and PLI2) must be on the
default drive.

As the compiler proceeds through the first two passes, it displays the
messages:

NO ERROR(S) IN PASS 1
NO ERROR(S) IN PASS 2

If there are errors, the compiler lists each line containing an error
with the line number to the left, a short error message, and a ? below
the position in the line where the error occurs.

At the end Pass 3, the compiler displays the message,

CODE SIZE = nnnn
DATA AREA = nnnn
FREE SYMS = nnnn
END COMPILATION

where nnnn are hexadecimal numbers representing the amount of storage
used for the code and data, as well as the amount of Transient Program
Area (TPA) left for Symbol Table space.

If the number of error messages is excessive and you want to make
corrections before proceeding, you can halt the compilation by pressing
any key. The compiler responds with the message:

STOP PL/I (Y/N)?
Enter Y to halt the compilation.

Note: Under DOS, you stop a program by pressing CTRL-Break, which
immediately returns control to the operating system. Therefore, you
will not see the message output by PL/I.

If you use the N option, the compiler lists the program line number on
the left, followed by a letter a through z that denotes the nesting
level for each line. The main program level is a, and each nested BEGIN
advances the level by one letter, while each nested PROCEDURE advances
the level by two letters.

If you use the L option, the compiler lists the relative machine code
address for each line as a four-digit hexadecimal number. This address
is useful for determining the amount of machine code generated for each
statement and the relative machine code address for each line of the
program. The compiler prints the source language statement on the line
following the relative machine code value.

Listings 6-la and 6-lb show two compilations of a program called DEMO
that is on your sample program disk.

1 a demo:
2 b procedure options(main);
3 b
4 b declare
5 b name character(20) varying;
6 b

PL/I Programmer's Guide 6.4 The DEMO Program

6-5

7 b
8 b put skip(2) list('PLEASE ENTER YOUR FIRST NAME: ');
9 b get list(name);
10 b put skip(2) list('HELLO ', name,' WELCOME TO PL/I');
11 b
12 bend demo;

Listing 6–1. Compilation of DEMO Using $N Option

1 a 0000 demo:
2 a 0006 procedure options(main);
3 a 0006
4 c 0006 declare
5 c 0006 name character(20) varying;
6 c 0006
7 c 0006
8 c 0006 put skip(2) list('PLEASE ENTER YOUR FIRST NAME: ');
9 c 0022 get list(name);
10 c 003C put skip(2) list('HELLO ', name,' WELCOME TO PL/I');
11 c 006C
12 a 006C end demo;

Listing 6–2. Compilation of DEMO Using $L Option

6.4 The DEMO Program
You can start learning to use the PL/I system by compiling the program
called DEMO. The source file for DEMO is on your PL/I sample program
disk, so you do not have to write the code. To display the source file,
use the TYPE command, as follows:

To compile the DEMO program, enter the command:

A>pli demo

Now examine your directory and find the object file that contains the
relocatable machine code produced by the compiler. The machine code
produced by the compiler is not directly executable, so you have to
link the object file with the Run-time Subroutine Library (RSL) with
the command:

A>link demo

Now examine your directory and find the command file and the Symbol
Table file produced by the linkage editor. You can load the Symbol
Table file under SID-80 or SID-86 for debugging.

6.5 Running DEMO
To run the compiled program, enter the name of the command file,

A>demo

The operating system loads the DEMO program, which begins processing
and prompts you with the message,

PLEASE ENTER YOUR FIRST NAME:

Console input is free-field and incorporates the full line-editing
facilities of the operating system. When you enter your name, DEMO
gives an appropriate response. Listing 6-2 shows interaction with DEMO.

PL/I Programmer's Guide 6.6 Error Messages and Codes

6-6

A>demo
PLEASE ENTER YOUR FIRST NAME: Larry
HELLO Larry, WELCOME TO PL/I
A>

Listing 6–3. Interaction with the DEMO Program

Various run-time errors can halt processing if the program does not
explicitly intercept them. In this case, PL/I displays the message in
the following form:

error-condition (code), file-option, auxiliary-message
Traceback: aaaa bbbb cccc dddd # eeee ffff gggg hhhh

The error-condition is one of the standard PL/I condition categories
(see Section 4.4.4). Code is an error subcode identifying the origin of
the error.

PL/I prints the file option when the error involves an I/O operation,
and takes the form,

File: internal=external

where internal is the internal program name that references the file
involved in the error, and external is the external device or filename
associated with the file. PL/I prints the auxiliary message whenever
the preceding information is insufficient to identify the error.

The traceback portion lists up to eight elements of the internal stack.
In the preceding general form, element aaaa corresponds to the top of
the stack, while hhhh corresponds to the bottom of the stack. If the
stack depth exceeds eight elements, the # character separates the four
topmost elements on the left from the four lowermost elements on the
right.

Listing 6-3 is an example of the diagnostic form. In this case, the
console input is an end-of-file (CTRL-Z) character. Entering a CTRL-Z
signals the ENDFILE condition for the SYSIN file. This is standard
console input. In this example, the external device connected to the
SYSIN file is the console, denoted by CON.

A>demo
PLEASE ENTER YOUR FIRST NAME: ^Z
END OF FILE (1), File: SYSIN=CON
Traceback: 07BE 0769 012E 4COO # 0702 0322 8090 012E
A>

Listing 6–4. Error Traceback for the DEMO Program

6.6 Error Messages and Codes
PL/I can detect two kinds of errors: compilation errors and run-time
errors. The Compiler marks each compilation error with an error message
following the line containing the error, with a ? character near the
position of the error in the line. The ? might follow the actual error
position by a few columns. In some cases, an error on one line can lead
to errors on subsequent lines.

PL/I categorizes errors as either recoverable or non-recoverable. Most
compile-time errors are recoverable, and the Compiler continues
processing the source file. However, some compile-time errors are non-

PL/I Programmer's Guide 6.6 Error Messages and Codes

6-7

recoverable. The Compiler stops processing and control immediately
returns to the operating system.

The run-time system detects errors while the program is running. Most
run-time errors are recoverable if intercepted by an ON-unit. However,
some run-time errors are non- recoverable. The program stops and
control immediately returns to the operating system.

In general, the error messages are implementation-dependent. See
Appendix E in the LRM for the complete list.

End of Section 6

Section 7

7-1

7 Using Different Data Types
PL/I programs allow you to use different data types to suit different
applications. In programs throughout the manual, you should note how
and why each type of data is used in a particular situation.

7.1 The FLTPOLY Program
Listing 7-1 shows a program for evaluating a polynomial expression.
The program begins by reading three values, x, y, and z, from the
console, and then uses the values to evaluate the polynomial
expression:

p(x,y,z) = x2 + 2y + z

The main part of the program is bounded by a single DO-group. On each
successive iteration, the program reads the values of x, y, and z from
the standard SYSIN, console, file. The program then writes the value
produced by p(x,y,z) to the SYSPRINT file, again, the console file.
Finally, if all the input values are zero, the program executes the
STOP statement and ends the indefinite loop.

The program uses the %REPLACE statement on line 8 to define the literal
value of true as the bit-string constant, '1'b. The compiler
substitutes this value whenever it encounters the name true. Thus, the
compiler interprets the DO-group beginning on line 13 as,

do while ('1'b);

end,:

which loops until it executes the contained STOP statement. Using
%REPLACE statements to define constants can improve the readability of
your programs.

1 a
2 a /* This program evaluates a polynomial expression
3 a /* using FLOAT BINARY data.
4 a
5 a fltpoly:
6 b procedure options(main);
7 b
8 b %replace
9 b true by '1'b;
10 bdeclare
11 b (x,y,z) float binary(24);
12 b
13 cdo while(true);
14 c put skip(2) list('Type x,y,z: '};
15 c get list(x,y,z);
16 c
17 c if x=0 & y=0 & z=0 then
18 c stop;
19 c
20 c put skip list(' 2');
21 c put skip list(' x + 2y + z =',p(x,y,z));
22 cend;
23 b
24 bP:
25 c procedure (x,y,z) returns (float binary(24));

PL/I Programmer's Guide 7.2 The DECPOLY Program

7-2

26 c declare
27 c (x,y,z) float binary;
28 c return (x * x + 2 * y + z);
29 cend P;
30 b
31 b end fltpoly;

Listing 7–1. Polynomial Evaluation Program (FLOAT BINARY)

Listing 7-2 shows the console interaction with the FLTPOLY program.
The initial values for x, y, and z are: 1.4, 2.3, and 5.67, but on the
next loop, the input takes the form:

,4.5,,

This form changes the value of y only. Thus, on this loop, the values
of x, y, and z are 1.4, 4.5, and 5.67. The third input line changes y
and z, while the fourth line changes x only.

A>fltpoly

Type x,y,z: 1.4, 2.3, 5.67

 2
 x + 2y + z = 1.223000E+01

Type x,y,z: , 4.5,,

 2
 x + 2y + z = 1.663000E+01

Type x,y,z: , 4.0,-3.7

 2
 x + 2y + z = 1.427000E+01

Type x,y,z: 2.3,,,

 2
 x + 2y + z = 3.559999E+00

Type x,y,x: 0,0,0

A>

Listing 7–2. Interaction with FLTPOLY Program

7.2 The DECPOLY Program
Listing 7-3 shows the DECPOLY program, which is essentially the same
program as Listing 7-1. The difference between the two programs is that
FLTPOLY uses FLOAT BINARY data items, while DECPOLY uses FIXED DECIMAL
items. FLOAT BINARY computations execute significantly faster than
their FIXED DECIMAL equivalents, but single-precision FLOAT BINARY
computations involve truncation errors, and produce an answer with only
about 7 decimal places of accuracy.

1 a
2 a /* This program evaluates a polynomial expression
3 a /* using FIXED DECIMAL data.
4 a

PL/I Programmer's Guide 7.2 The DECPOLY Program

7-3

5 a decpoly:
6 b procedure options(main);
7 b
8 b %replace
9 b true by '1'b;
10 bdeclare
11 b (x,y,z) fixed decimal(15,4);
12 b
13 cdo while(true);
14 c put skip(2) list('Type x,y,z: ');
15 c get list(x,y,z);
16 c
17 c if x=0 & y=0 & z=0 then
18 c stop;
19 c
20 c put skip list(' 2');
21 c put skip list(' x + 2y + z =',p(x,y,z));
22 cend;
23 b
24 bP:
25 cprocedure (x,y,z) returns (fixed decimal(15,4));
26 cdeclare
27 c (x,y,z) fixed decimal(15,4);
28 c return (x * x + 2 * y + z);
29 cend P;
30 b
31 b end decpoly;

Listing 7–3. Polynomial Evaluation Program (FIXED DECIMAL)

Listing 7-4 shows the console interaction with the DECPOLY program.
The initial input values for x, y, and z are: 1.4, 2.3, and 5.67.
These are the same values used for the FLTPOLY program, but notice the
difference in the output. The second loop changes the values of y and
z, and the third loop changes all three values.

A>decpoly

Type x,y,z: 1.4, 2.3, 5.67

 2
 x + 2y + z = 12.2300

Type x,y,z: , .0006, 7,

 2
 x + 2y + z = 8.9612

Type x,y,z: 723.445, 80.54, 0

 2
 x + 2y + z = 523533.7480

Type x,y,z: 0,0,0

A>

Listing 7–4. Interaction with DECPOLY Program

PL/I Programmer's Guide 7.2 The DECPOLY Program

7-4

Experiment with these two programs by comparing the results when you
enter the same values in each one. Understanding how PL/I internally
treats the different data types helps you choose the right type of data
to suit the application.

References: LRM Section 3.1, 11.1, Appendix A

End of Section 7

Section 8

8-1

8 STREAM and RECORD File Processing
The example programs in this section illustrate STREAM and RECORD file
processing using the various I/O statements.

8.1 File Copy Program
Listing 8-1 shows a general purpose, file-to-file copy program. The
program first defines and opens two file constants called input file
and output - file. It then begins executing a continuous loop that
reads data from input-file and copies it to output-file.

Both OPEN statements define STREAM files with internal buffers of 8192
bytes each. In the first OPEN statement, PL/I supplies the default
attribute INPUT, while the second OPEN statement explicitly specifies
an OUTPUT file. Otherwise, it would also default to an INPUT file.

This program shows the special use of READ and WRITE statements to
process STREAM files. The READ statement on line 19 reads a STREAM file
into buff, a character string of varying length. It reads each line of
input up to and including the next carriage return line-feed into buff,
and sets the length of buff to the amount of data read, including the
carriage return line-feed character. The WRITE statement performs the
opposite action. It sends the data to a STREAM file from buff. The
output file receives all characters from the first position through the
length of buff.

The program terminates by reading through the input file until it
reaches the end-of-file (CTRL-Z) character. PL/I automatically closes
all open files, and writes the internal buffers onto the disk, thus
preserving the newly created output file.

 1 a
 2 a /* This program copies one file to another using
 3 a /* buffered I/O.
 4 a
 5 a copy:
 6 b procedure options(main);
 7 b declare
 8 b (input_file,output_file) file;
 9 b
 10 b open file (input_file) stream
 11 b environment(b(8192)) title('$1.$1');
 12 b
 13 b open file (output_file) stream output
 14 b environment(b(8192)) title('$2.$2');
 15 b declare
 16 b buff character(254) varying;
 17 b
 18 c do while ('1'b)
 19 c read file (input_file) into (buff);
 20 c write file (output_file) from (buff);
 21 c end;
 22 b end copy;

Listing 8–1. COPY (File-to-File) Program

Listing 8-2 shows a sample execution of the copy program using the
following command line:

PL/I Programmer's Guide 8.1 File Copy Program

8-2

A>copy copy.pli $con

In this case, the input file is COPY.PLI the original source file,
while the output file is the system console. Thus, the program simply
lists COPY.PLI at the terminal.

The TITLE options connect the internal filenames to external devices
and files. The command line has two parts: the command itself, and the
command tail, which can contain two filenames.

Figure 8–1. Default Filenames in the Command Tail

The OPEN statement on line 10 takes the first default name, including
the drive in the command tail (denoted by $1.$l), and assigns it to the
internal file constant called input file. Similarly, the second OPEN
statement on line 13 takes the second default name including the drive
in the command tail (denoted by $2.$2) , and assigns it to the internal
file constant called output-file.

For example, the command,

A>copy a:x.dat c:u.new

copies the file X.DAT from drive a to the new file U.NEW on drive c.
The input file must exist, but PL/I erases the output file if it
exists, and recreates it.

A>copy copy.pli $con
 1 a
 2 a /* This program copies one file to another using
 3 a /* buffered I/O.
 4 a
 5 a copy:
 6 b procedure options(main);
 7 b declare
 8 b (input_file,output_file) file;
 9 b
 10 b open file (input-file) stream
 11 b environment(b(8192)) title('$l.$l');
 12 b
 13 b open file (output_file) stream output
 14 b environment(b(8192)) title('$2.$2');
 15 b declare
 16 b buff character(254) varying;
 17 b
 18 c do while('l'b);
 19 c read file (input_file) into (buff);
 20 c write file (output_file) from (buff);
 21 c end;
 22 b end copy;

END OF FILE (3), File: INPUT=COPY.PLI
Traceback : 044B 03AF 0155
A>

Listing 8–2. Interaction with the COPY Program

PL/I Programmer's Guide 8.2 Name and Address File

8-3

8.2 Name and Address File
The two programs in Listings 8-3 and 8-6 manage a simple name and
address file. The CREATE program produces a STREAM file containing
individual names and addresses that are subsequently accessed by the
RETRIEVE program.

8.2.1 The CREATE Program
The CREATE program in Listing 8-3 contains a data structure that
defines the name, address, city, state, zip code, and phone number
format. This data structure is not in the source file CREATE.PLI. It
is contained in a separate file named RECORD.DCL, and CREATE uses an
%INCLUDE statement to read and merge this file with the source file.
Both files are on your sample program disk. The + symbols to the right
of the source line number in the listing indicate that the code comes
from an %INCLUDE file. The actual line in the source program appears as
follows:

create:
procedure options(main);

%include 'record.dcl';

The file specified in the %INCLUDE statement can be any valid filename.
The compiler simply copies the file at the point of the %INCLUDE
statement, and then continues.

The OPEN statement, line 29, does not specify the PRINT attribute.
This means the output file is in a form suitable for later input using
a GET LIST statement.

 1 a
 2 a /* This program creates a name and address file. The
 3 a /* data structure for each record is in the %INCLUDE
 4 a /* file RECORD.DCL.
 5 a
 6 a create:
 7 b procedure options(main);
 8 b
 9+b declare
 10+b 1 record,
 11+b 2 name character(30) varying,
 12+b 2 addr character(30) varying,
 13+b 2 city character(20) varying,
 14+b 2 state character(10) varying,
 15+b 2 zip fixed decimal(6),
 16+b 2 phone character(12) varying;
 17 b %replace
 18 b true by '1'b,
 19 b false by '0'b;
 20 b
 21 b declare
 22 b output file,
 23 b filename character(14) varying,
 24 b eofile bit(l) static initial(false);
 25 b
 26 b put list ('Name and Address Creation Program, File Name:
 27 b get list (filename);
 28 b

PL/I Programmer's Guide 8.2 Name and Address File

8-4

 29 b open file(output) stream output title(filename);
 30 b
 31 c do while (^eofile);
 32 c put skip(3) list('Name:
 33 c get list(name);
 34 c eofile = (name = 'EOF');
 35 c if ^eofile then
 36 d do;
 37 d /* write prompt strings to console
 38 d put list('Address:
 39 d get list(addr);
 40 d put list('City, State, Zip:
 41 d get list(city, state, zip);
 42 d put list('Phone:
 43 d get list(phone);
 44 d
 45 d /* data in memory, write to output file
 46 d put file(output)
 47 d list(name,addr,city,state,zip,phone);
 48 d put file(output) skip;
 49 d end;
 50 c end;
 51 b put file(output) skip list('EOF');
 52 b put file(output) skip;
 53 b
 54 b end create;

Listing 8–3. CREATE Program

Listing 8-4 shows the console interaction with the CREATE program. You
specify the output file as names.dat in the first input line. The GET
LIST statement, line 33, accepts input delimited by blanks and commas,
unless the delimiters are included in single apostrophes. Thus, CREATE
takes the input line,

'John Robinson

as a single string value with PL/I automatically inserting the implied
closing apostrophe at the end of the line. The last entry includes the
three input values,

Unknown, 'Can"t Find', 99999

that CREATE assigns to the variables city, street, and state. Because
the first value does not begin with an apostrophe, the I/O system scans
the data item until the next blank, tab, comma, or end of-line occurs.
The second data item begins with an apostrophe, and this causes the I/O
system to consume all input through the trailing balanced apostrophe,
and reduce all embedded double apostrophes to a single apostrophe. The
last value, 99999, is assigned to a decimal number, and must contain
only numeric data. You can use the command,

A>type names.dat

to display the STREAM file that the program creates. Listing 8-5 shows
the output resulting from each input entry.

A>create
Name and Address Creation Program, File Name: names.dat

Name: 'Arthur Jackson'
Address: '100 W. 3rd St.'

PL/I Programmer's Guide 8.2 Name and Address File

8-5

City, State, Zip: 'Fresno', 'Ca.', 93706
Phone: '529-1277'

Name: 'Donna Harris'
Address: 12999 Sierra Rd.'
City, State, Zip: 'Chico', 'Ca.', 95926
Phone: '635-3570'

Name: 'John Robinson
Address: 1805 Franklin St.'
City, State, Zip: 'Monterey', 'Ca.', 93940
Phone: '649-1000'

Name: 'Virginia Wilson'
Address: '?'
City, State, Zip: Unknown, 'Can"t Find', 99999
Phone: '?'

Name: 'EOF'

A>

Listing 8–4. Interaction with the CREATE Program

A>type names.dat
'Arthur Jackson' '100 W. 3rd St.' 'Fresno' 'Ca.' 93706 '529-1277' 'Donna
Harris' '2999 Sierra Rd.' 'Chico' 'Ca.' 95926 '635-3570' 'John Robinson'
'805 Franklin St.' 'Monterey' 'Ca.' 93940 '649-1000' 'Virginia Wilson' '?'
'Unknown' 'Can''t Find' 99999 '?'

'EOF'

A>

Listing 8–5. Output from the CREATE Program

8.2.2 The RETRIEVE Program
The RETRIEVE program shown in Listing 8-6 reads the file created by
CREATE, and displays the name and address data upon user request. The
compiler includes the same RECORD.DCL file used in the CREATE program,
shown in Listing 8-3.

The main DO-group in the RETRIEVE program, between lines 30 and 59,
reads two string values corresponding to the lowest and highest names
to print on each iteration. The embedded DO-group between lines 41 and
57 reads the entire input file and lists only those names between the
lower and upper bounds.

The RETRIEVE program, similar to the CREATE program, reads the name of
the source file from the console. However, RETRIEVE opens and closes
this source file each time it receives a retrieval request from the
console.

The OPEN statement on line 38 sets the internal buffer size of the
input file to 1024 bytes. After processing the file, RETRIEVE executes
the CLOSE statement on line 58 and flushes all internal buffers. Thus,
RETRIEVE sets the input file back to the beginning on each retrieval
request.

 1 a retrieve:

PL/I Programmer's Guide 8.2 Name and Address File

8-6

 2 b procedure options(main);
 3 b /* name and address retrieval program */
 4 b
 5+b dcl
 6+b 1 record,
 7+b 2 name character(30) varying,
 8+b 2 addr character(30) varying,
 9+b 2 city character(20) varying,
 10+b 2 state character(10) varying,
 11+b 2 zip fixed decimal(6),
 12+b 2 phone character(12) varying;
 13 b
 14 b %replace
 15 b true by '1'b,
 16 b false by '0'b;
 17 b
 18 b dcl
 19 b (sysprint, input) file;
 20 b
 21 b dcl
 22 b filename character(14) varying,
 23 b (lower, upper) character(30) varying,
 24 b eofile bit(1);
 25 b
 26 b open file(sysprint) print title('$con');
 27 b put list('Name and Address Retrieval, File Name: ');
 28 b get list(filename);
 29 b
 30 c do while(true);
 31 c lower = 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA';
 32 c upper = 'zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz';
 33 c put skip(2) list('Type Lower, Upper Bounds: ');
 34 c get list(lower,upper);
 35 c if lower = 'EOF' then
 36 c stop;
 37 c
 38 c open file(input) stream input environment(b(1024))
 39 c title(filename);
 40 c eofile = false;
 41 d do while (^eofile);
 42 d get file(input) list(name);
 43 d eofile = (name = 'EOF');
 44 d if ^eofile then
 45 e do;
 46 e get file(input)
 47 e list(addr,city,state,zip,phone);
 48 e if name >= lower & name <= upper then
 49 f do;
 50 f put page skip(3)
 51 f list(name);
 52 f put skip list(addr);
 53 f put skip list(city,state);
 54 f put skip list(zip);
 55 f put skip list(phone);
 56 f end;
 57 e end;
 58 d end;
 59 c close file(input);

PL/I Programmer's Guide 8.2 Name and Address File

8-7

 60 c end;
 61 b end retrieve;

Listing 8–6. RETRIEVE Program

Listing 8-7 shows user interaction with the RETRIEVE program. Again,
the input file is names.dat, and exists on the disk in the form
produced by CREATE. The input values,

B,E

set lower to B and upper to E and cause RETRIEVE to list only Donna
Harris. The second console input line sets lower to B and upper to K.
This causes RETRIEVE to list Donna Harris and John Robinson. The comma
in the next input value sets the lower bound at AAA ... A and the upper
bound as K. Thus RETRIEVE lists Arthur Jackson, Donna Harris, and John
Robinson. The last entry consists only of a comma pair, leaving the
lower bound as the sequence AAA...A and the upper bound at zzz ... z.
These two bounds include the entire alphabetic range, so that RETRIEVE
displays the entire list 'of names and addresses. Finally, entering EOF
ends the program.

Line 26 of Listing 8-6 opens the SYSPRINT file with the PRINT attribute
and title of CP/M. It is good programming practice to open all files
with explicit attributes. In this case the statement is redundant
because when PL/I executes the PUT LIST statement on line 27, it
supplies the same attributes to the file by default.

A>retrieve
Name and Address Retrieval, File Name: names.dat

Type Lower, Upper Bounds: B,E

Donna Harris
2999 Serra Rd.
Chico Ca.

95926
635-3570

Type Lower, Upper Bounds: B,K

Donna Harris
2999 Serra Rd.
Chico Ca.

95926
635-3570

John Robinson
805 Franklin St.
Monterey Ca.

93940
649-1000

Type Lower, Upper Bounds: K

Arthur Jackson
100 w. 3rd St.
Fresno Ca.

93706
529-1277

PL/I Programmer's Guide 8.3 An Information Management System

8-8

Donna Harris
2999 Serra Rd.
Chico Ca.

95926
635-3570

John Robinson
805 Franklin St.
Monterey Ca.

93940
649-1000

Type Lower, Upper Bounds:

Arthur Jackson
100 W. 3rd St.
Fresno Ca.

93706
529-1277

Donna Harris
2999 Serra Rd.
Chico Ca.

95926
635-3570

John Robinson
805 Franklin St.
Monterey Ca.

93940
649-1000

Virginia Wilson

Unknown Can't Find
99999

Type Lower, Upper Bounds; EOF,,

A>

Listing 8–7. Interaction with the RETRIEVE Program

8.3 An Information Management System
The next four sample programs provide a model for an information
management system. These programs manage a file of employee names,
addresses, wage schedules, and wage reporting mechanisms. Each of these
programs is simple, but together they contain all the elements of a
more advanced data base management system. They demonstrate the power
of the PL/I programming system, while providing the basis for custom
application programs.

First, the ENTER program establishes the data base. A second program,
called KEYFILE, reads this data base and prepares a key file for direct
access to individual records in the data base. A third program, called
UPDATE, interacts with the user at the console and allows access to the

PL/I Programmer's Guide 8.3 An Information Management System

8-9

data base for retrieval and update. Finally, the REPORT program reads
the data base to produce a report.

8.3.1 The ENTER Program
Listing 8-8 shows the ENTER program. The ENTER program interacts with
the user at the console and constructs the initial data base. The
basic input loop between lines 40 and 53 prompts the user for an
employee name, age, and hourly wage. ENTER fills, the employee data
structure with this information. In the example, line 48 fills the
address fields with default values defined in the structure on lines 24
through 33. You can terminate the console input by entering EOF.

The employee record contains several fields whose total length is 101
bytes. You can use the $S compiler option to verify this value. The
OPEN statement on line 37 specifies a fixed record size of 128 bytes,
so you can expand the records later. Each record of the emp file holds
exactly one employee data structure.

The OPEN statement gives emp the KEYED attribute, and makes each record
the fixed size specified in the ENVIRONMENT option. The OPEN statement
also specifies the buffer size as 8000 bytes, which PL/I automatically
rounds off to 8192 bytes. The program fills each employee record from
the console input and writes the record to the employee file named in
the command line, with the file type EMP, line 38.

The WRITE statement is in a separate subroutine, named WRITEIT,
starting on line 55. Placing the code in a separate subroutine helps
reduce the size of the program because the program calls WRITEIT at two
different points, lines 45 and 52.

Listing 8-9 shows the user interaction with the ENTER program as
several employee records are entered. Entering EOF ends the program,
closes the file plantl.emp, and records the data on the disk.

 1 a enter:
 2 b proc options(main);
 3 b
 4 b %replace
 5 b true by '1'b,
 6 b false by '0'b;
 7 b
 8 b dcl
 9 b 1 employee static,
 10 b 2 name char(30) varying,
 11 b 2 addr,
 12 b 3 street char(30) varying,
 13 b 3 city char(10) varying,
 14 b 3 state char(7) varying,
 15 b 3 zip fixed dec(5),
 16 b 2 age fixed dec(3),
 17 b 2 wage fixed dec(5,2),
 18 b 2 hours fixed dec(5,1);
 19 b
 20 b dcl
 21 b 1 default static,
 22 b 2 street char (30) varying
 23 b initial('(no street)'),
 24 b 2 city char(10) varying
 25 b initial('(no city)'),

PL/I Programmer's Guide 8.3 An Information Management System

8-10

 26 b 2 state char(7) varying
 27 b initial('(no st)'),
 28 b 2 zip fixed dec(5)
 29 b initial(00000);
 30 b dcl
 31 b emp file;
 32 b
 33 b open file(emp) keyed output environment(f(100),b(8000))
 34 b title ('$1.EMP');
 35 b
 36 c do while(true);
 37 c put list('Employee: ');
 38 c get list(name);
 39 c if name = 'EOF' then
 40 d do;
 41 d call write();
 42 d stop;
 43 d end;
 44 c addr = default;
 45 c put list (' Age, Wage: ');
 46 c get list (age,wage);
 47 c hours = 0;
 48 c call write();
 49 c end;
 50 b
 51 b write:
 52 c procedure;
 53 c write file(emp) from(employee);
 54 c end write;
 55 b end enter;

Listing 8–8. The ENTER Program

A>enter plantl
Employee: Jackson

Age, Wage: 25, 6.75
Employee: Harris
Age, Wage: 30, 9.00
Employee: Robinson
Age, Wage: 41, 15.00
Employee: Wilson
Age, Wage: 27, 7.50
Employee: Smith
Age, Wage: 25,
Employee: Jones
Age, Wage: F I
Employee: EOF

A>

Listing 8–9. Interaction with the ENTER Program

8.3.2 The KEYFILE Program
Listing 8-10 shows the KEYFILE program, which constructs a key file by
reading the data base file created by ENTER. The key file is a sequence
of entries consisting of an employee name followed by the key number
corresponding to that name. In this case, the key file is also a STREAM
file, so you can display it at the console. Line 16 opens the $1.EMP
file with the KEYED attribute, specifies each record to be 128 bytes

PL/I Programmer's Guide 8.3 An Information Management System

8-11

long, and sets a buffer size of 10000 bytes. Line 19 opens the key
file named keys as a STREAM file with LINESIZE(60) and a TITLE option
that appends KEY as the filetype.

On line 23, the KEYFILE program reads successive records, extracts the
key with the KEYTO option, and writes the name and key to both the
console and to the key file. The sample interaction in Listing 8-11
illustrates the output from KEYFILE using the plantl.emp data base.
Each key value extracted by the READ statement is the relative record
number corresponding to the position of the record in the file.

After executing the KEYFILE program, you can use the command

A>type plantl.key

to display the actual contents of the plantl.key file as shown in
Listing 8-12.

 1 a keypr:
 2 b proc options(main);
 3 b
 4 b /* create key from employee file */
 5 b
 6 b dcl
 7 b 1 employee static,
 8 b 2 name char(30) varying;
 9 b
 10 b dcl
 11 b (input, keys) file;
 12 b
 13 b dcl
 14 b k fixed;
 15 b
 16 b open title('$1.emp') keyed
 17 b env(f(100),b(10000)) file(input);
 18 b
 19 b open file (keys) stream output
 20 b linesize (60) title('$1.key');
 21 b
 22 c do while('1');
 23 c read file(input) into(employee) keyto(k);
 24 c put skip list(k,name);
 25 c put file(keys) list(name,k);
 26 c if name = 'EOF' then
 27 c stop;
 28 c end;
 29 b end keypr;

Listing 8–10. The KEYFILE Program

A>keyfile plantl

0 Jackson
1 Harris
2 Robinson
3 Wilson
4 Smith
5 Jones
6 EOF

A>

Listing 8–11. Interaction with the KEYFILE Program

PL/I Programmer's Guide 8.3 An Information Management System

8-12

A>type plantl.key
'Jackson' 0 'Harris' 1 'Robinson' 2
'Wilson' 3 'Smith' 4 'Jones' 5 1EOF'
A>

Listing 8–12. Contents of the Key File

8.3.3 The UPDATE Program
The UPDATE program in Listing 8-13 allows you to access the data base
created by ENTER and indexed through the file created by KEYFILE. The
UPDATE program first reads the key file, a STREAM file, into a data
structure called keylist. Keylist cross references the employee name
with the corresponding key value in the data base. Lines 20 to 23
declare the data structure that holds these cross-reference values, and
lines 37 to 40 fill in the data

Note: Line 39 is not a multiple assignment statement, but rather a
definition of a Boolean expression for the variable, eolist.

UPDATE opens the emp file on line 31. The OPEN statement assigns the
file the DIRECT attribute, that allows both READ and WRITE operations
with the individual records identified by a key value. You then enter
an employee name as matchname, and the DO-group between lines 47 and 61
directly accesses the individual records in the data base.

The direct access takes place as follows. Line 48 searches the list of
names read from the key file. If there is a match, the READ with KEY
statement on line 50 brings the employee record into memory from the
emp file. The program displays and updates various fields from the
console, and then rewrites the record to the data base with the WRITE
with KEYFROM statement on line 58. UPDATE ends execution when you enter
an EOF.

Listing 8-14 shows three successive update sessions during which
various addresses and work times are updated. In each session, you
enter the employee name, access and display the record, and optionally,
update the fields. The GET LIST statement is useful here. To change a
value, you simply type the new value in the field position. If you do
not want to change a value, entering a comma delimiter leaves the field
unchanged.

 1 a update:
 2 b proc options(main);
 3 b dcl
 4 b 1 employee static,
 5 b 2 name char(30) var,
 6 b 2 addr,
 7 b 3 street char(30) var,
 8 b 3 city char(10) var,
 9 b 3 state char(7) var,
 10 b 3 zip fixed dec(5),
 11 b 2 age fixed dec(3),
 12 b 2 wage fixed dec(5,2),
 13 b 2 hours fixed dec(5,1);
 14 b dcl
 15 b (emp, keys) file;
 16 b dcl
 17 b 1 keylist (100),
 18 b 2 keyname char(30) var,

PL/I Programmer's Guide 8.3 An Information Management System

8-13

 19 b 2 keyval fixed binary;
 20 b dcl
 21 b (i, endlist) fixed,
 22 b eolist bit(1) static initial('0'b),
 23 b matchname char(30) var;
 24 b
 25 b open file(emp) update direct env(f(100))
 26 b title ('$1.EMP');
 27 b
 28 b open file(keys) stream env(b(4000)) title('$1.key');
 29 b
 30 c do i = 1 to 100 while(^eolist);
 31 c get file(keys) list(keyname(i),keyval(i));
 32 c eolist = keyname(i) = 'EOF';
 33 c end;
 34 b
 35 c do while('1'b);
 36 c put skip list('Employee: ');
 37 c get list(matchname);
 38 c if matchname = 'EOF' then
 39 c stop;
 40 d do i = 1 to 100;
 41 d if matchname = keyname(i) then
 42 e do;
 43 e read file(emp) into(employee)
 44 e key(keyval(i));
 45 e put skip list('Address: ',
 46 e street, city, state, zip);
 47 e put skip list(' ');
 48 e get list(street, city, state, zip);
 49 e put list('Hours:',hours,': ');
 50 e get list(hours);
 51 e write file(emp) from (employee)
 52 e keyfrom(keyval(i));
 53 e end;
 54 d end;
 55 c end;
 56 b end update;

Listing 8–13. The UPDATE Program

A>update plantl

Employee: Jackson

Address: (no street) (no city) (no state) 0
'100 W. 3rd St.', 'Fresno', 'Ca.', 93706

Hours: 0.0 : 40.0
Employee: Harris
Address: (no street) (no city) (no state) 0

'2999 Serra Rd.', 'Chico', 'Ca.', 95926
Hours: 0.0 : 46.0
Employee: EOF

A>update plantl
Employee: Harris

Address: 2999 Serra Rd. Chico Ca. 95926
wool

PL/I Programmer's Guide 8.3 An Information Management System

8-14

Hours: 46.0 : 48.0

Employee: Wilson

Address: (no street) (no city) (no state) 0
sell

Hours: 0.0 : 35.5

Employee: EOF
A>update plantl

Employee: Wilson

Address: (no street) (no city) (no state) 0
1556 Palm Ave.', 'Burbank', 'Ca.', 91L507

Hours: 35.5
Employee: ROF
A>

Listing 8–14. Interaction with the UPDATE Program

8.3.4 The REPORT Program
Listing 8-15 shows the REPORT program. The REPORT program uses the
updated employee file to produce a list of employees along with their
paycheck values. The REPORT program also accesses the employee file,
but it reads the file sequentially to produce the desired output. The
main DO-group between lines 35 and 51 reads each successive employee
record and constructs a title line of the form,

[name]

followed by a dollar amount. REPORT uses the STREAM form of the WRITE
statement, lines 41 and 50, to produce the output line. Line 40
includes the embedded control characters ^M and ^J at the end of buff
to cause a carriage return and line-feed when writing the buffer. The
REPORT program then computes the pay value and assigns it to the
CHARACTER VARYING string called buff, on line 44. In this assignment,
PL/I performs an automatic data conversion from FIXED DECIMAL to
CHARACTER, with leading blanks. REPORT also scans the leading blanks,
replacing them by a dollar sign dash sequence to align the output, and
writes the data to the report file.

Listings 8-16 and 8-17 show the output from the REPORT program. In the
first case, the command,

A>report plantl $con

sends the report to the console for review. In the second case, the
command,

A>report plantl plantl.prn

sends the output to the disk file plantl.prn. You can then examine the
contents of the file with the command:

A>type plantl.prn

 1 a report:
 2 b procedure options(main);
 3 b

PL/I Programmer's Guide 8.3 An Information Management System

8-15

 4 b dcl
 5 b 1 employee static,
 6 b 2 name character(30) varying,
 7 b 2 addr,
 8 b 3 street character(30) varying,
 9 b 3 city character(10) varying,
 10 b 3 state character(7) varying,
 11 b 3 zip fixed dec(5),
 12 b 2 age fixed dec(3),
 13 b 2 wage fixed dec(5,2),
 14 b 2 hours fixed dec(5,1);
 15 b
 16 b dcl
 17 b dashes character(15) static initial
 18 b ('$--------------'),
 19 b buff character(20) varying;
 20 b
 21 b dcl
 22 b i fixed,
 23 b (grosspay, withhold) fixed dec(7,2);
 24 b
 25 b dcl
 26 b (repfile, empfile) file;
 27 b
 28 b open file(empfile) keyed env(f(100),b(4000))
 29 b title ('$1.EMP');
 30 b
 31 b open file(repfile) stream print title('$2.$2')
 32 b environment(b(2000));
 33 b
 34 b put list('Set Top of Forms, Type Return');
 35 b get skip;
 36 b
 37 c do while('1'b);
 38 c read file(empfile) into(employee);
 39 c if name = 'EOF' then
 40 c stop;
 41 c put file(repfile) skip(2);
 42 c buff = '[' !! name !! ']^m^j';
 43 c write file(repfile) from (buff);
 44 c grosspay = wage * hours;
 45 c withhold = grosspay * .15;
 46 c buff = grosspay - withhold;
 47 d do i = 1 to 15
 48 d while (substr(buff,i,1) = ' ');
 49 d end;
 50 c i = i - 1;
 51 c substr(buff,1,i) = substr(dashes,1,i);
 52 c write file (repfile) from(buff);
 53 c end;
 54 b
 55 b end report;

Listing 8–15. The REPORT Program

A>report plantl $con
Set Top of Forms, Press Return

(Jackson]

PL/I Programmer's Guide 8.3 An Information Management System

8-16

$ ---- 229.50

[Harris]
$ ---- 351.90

[Robinson]
$ ------ 0.00

[Wilson]
$ ---- 226.32

[Smith]
$ ------ 0.00

[Jones]
$ ------ 0.00
A>

Listing 8–16. REPORT Generation to the Console

A>report plantl plantl.prn
Set Top of Forms, Press Return

A>type plantl.prn

[Jackson]
$ ---- 229.50

[Harris]
$---- 351.90

(Robinson]
$ ------ 0.00

(Wilson]
$ ---- 226.32

[Smith]
$ ------ 0.00

[Jones]
$ ------ 0.00

Listing 8–17. REPORT Generation to a Disk File

References: LRM Sections 10.1, 10.8, 11.2, 12

End of Section 8

Section 9

9-1

9 Label Constants, Variables, and Parameters
Each of the programs presented so far ends execution either by
encountering an end-of-file condition with a corresponding ENDFILE
traceback, or by using a special data value that signals the end-of
data condition. The EPOLY program detects the end-of-data condition by
checking for the special case where all three input values, xf Y, and
z, are zero.

Fortunately, PL/I provides more elegant ways to sense the end-of data
condition. In fact, sensing the end-of-data condition is just one of
many facilities under the general heading of condition processing. Most
often, handling these conditions involves labeled statements. You need
some background in label processing before you take up the general
topic of condition processing in Section 10.

9.1 Labeled Statements
It is an axiom of programming to avoid labeled statements and GOTOs
because of the unstructured programs that result. Programs containing
many labeled statements are often difficult for other programmers to
comprehend. Such programs become unreadable, even to the author, as the
program grows in size.

PL/I encourages good structure by providing a comprehensive set of
control structures in the form of iterative DO-groups with REPEAT and
WHILE options. These control structures preclude the necessity for
labeled statements in the general programming schema. You should use
these control structures whenever possible, and limit the use of
labeled statements to condition processing and locally defined,
computed GOTOs.

Judicious use of labeled statements is appropriate in condition
processing. The occurrence of an error, such as a mistyped input data
line, is easily handled by transferring program control to a label in
an outer block, where recovery takes place. This method of
understanding the program flow is simpler than the usual system of
flags, tests, and return statements.

9.2 Program Labels
Program labels, like other PL/I data types, fall into two broad
categories: label constants and label variables. A label constant
appears literally within the source program, and its value does not
change when the program runs. A label variable has no initial value,
and you must assign it the value of a label constant through a direct
assignment statement, or through the parameter assignment implicit in a
subroutine call.

The following code sequence is an example of a label constant preceding
a PL/I statement.

on error(l)
begin;
put skip list('Bad Input, Try Again');
goto retry;
end;

PL/I Programmer's Guide 9.3 Computed GOTO

9-2

retry: get list(name);

The statement on error(l) sets a trap for a particular condition. If
the condition arises due to an invalid input, then control transfers to
the BEGIN block, which outputs an error message, and then transfers
control back to the labeled statement. If there is no error on input,
control transfers to the next statement following the GET LIST
statement.

9.3 Computed GOTO
In PL/I, a label constant can contain a single positive or negative
literal subscript. A subscripted label constant corresponds to the
target of an n-way branch, that is, a computed GOTO. The following code
sequence shows a specific example.

get list(x);
goto q(x);

q(-l):
y = fl(x);
goto endq;

q(0):
y = f2(x);
goto endq;

q(2):;
q(3):

y = f3(x);
endq:

put skip list('f(x)=',y);

This code implicitly defines four label constants: q(-l), q(0), q (2) ,
and q(3). The compiler automatically defines an internal label constant
vector,

q(-1:3) label constant

to hold the values of these label constants.

The preceding statement is not a valid PL/I statement, but indicates
what the compiler does internally when it encounters such statements in
the source code. Also, when using such constructs, do not transfer
control to a subscript that does not have a corresponding label-
constant value. In the preceding case, a branch to q(l) produces
undefined results.

9.4 Label References
A reference to a label constant can be either local or nonlocal. A
local reference to a label constant means that the label occurs as the
target of a GOTO statement only in the PROCEDURE or BEGIN block that
contains the GOTO. A nonlocal reference to a label constant means that
the label occurs on the right side of an assignment to a label
variable, as an argument to a subroutine, or as the target of a GOTO
statement in an inner nested PROCEDURE or BEGIN block.

Although there is no functional difference between processing a local
ly-r eferenced and nonlocally-referenced label constant, a nonlocal
reference requires additional space and time. For this reason, PL/I
assumes that a subscripted label constant will be only locally

PL/I Programmer's Guide 9.5 Example Program

9-3

referenced. If program control transfers to a subscripted label
constant from outside the current environment, undefined results can
occur.

As an example, consider the following code sequence:

main:
procedure options(main);
P1:

procedure;
goto lab1;
goto lab2;

P2:
procedure;

goto lab2;
end P2;
lab1:;
lab2:;

end P1;
end main;

The label constant lab1 is only locally referenced in the procedure P1,
while lab2 is the target of both a local reference in PI and a nonlocal
reference in P2.

9.5 Example Program
Listing 9-1 shows a nonfunctional program that illustrates the use of
various label constants and variables. The label constants in the
LABELS program are c(l), c(2), c(3), lab1, and lab2. They are defined
by their literal occurrence in the program. The label variables are x,
y, z, and g, and are defined by the declarations on lines 10 and 38.

At the start of execution, the label variables have undefined values.
The program first assigns the constant value lab1 to the variable x.
Label variable y then indirectly receives the constant value lab1
through the assignment on line 12. As a result, all three GOTO
statements on lines 14, 15, and 16 are functionally equivalent. Each
statement transfers control to the null statement following the label
lab1 on line 32.

The subroutine call on line 18 shows a different form of variable
assignment. Lab2 is an argument sent to the procedure P, and assigned
to the formal label variable g. In this program, the subroutine call
transfers program control directly to the statement labeled lab1.

The DO-group beginning on line 20 initializes the variable label vector
z to the corresponding constant label vector values of c. Due to this
initialization, the two computed GOTO statements, starting on line 25,
have exactly the same effect.

 1 a
 2 a /* This is a nonfunctional program. Its purpose is
 3 a /* to illustrate the concept of label constants and
 4 a /* variables.
 5 a
 6 a Labels:
 7 b procedure options(main);
 8 b declare
 9 b i fixed,
 10 b (x, y, z(3)) label;

PL/I Programmer's Guide 9.5 Example Program

9-4

 11 b x = labl;
 12 b y = X;
 13 b
 14 b goto labl;
 15 b goto X;
 16 b goto Y;
 17 b
 18 b call P(lab2);
 19 b
 20 c do i = 1 to 3;
 21 c Z(i) = c(i);
 22 c end;
 23 b
 24 b i = 2;
 25 b goto Z(i);
 26 b goto c(i);
 27 b
 28 b c(l)
 29 b c(2):;
 30 b c(3):;
 31 b
 32 b labl:;
 33 b lab2:;
 34 b
 35 b P:
 36 c procedure (g);
 37 c declare
 38 c g label;
 39 c goto g;
 40 c end P;
 41 b
 42 b end Labels;

Listing 9–1. An Illustration of Label Variables and Constants

References: LRM Sections 3.3, 8.5, 8.6

End of Section 9

Section 10

10-1

10 Condition Processing
Condition processing is an important facility of any production
programming language. The language should allow a program to intercept
and handle run-time error conditions with program-defined actions, and
then continue.

For example, a common condition occurs when a program is reading input
data from an interactive console, and you inadvertently enter a value
that does not conform to the data type of the input variable. The PL/I
run-time system signals a conversion error, and in the absence of any
program-defined action, ends the program with a traceback. If this
premature termination occurs after hours of data entry, it causes a
considerable amount of wasted effort. This is unacceptable in a
production environment.

10.1 Condition Categories
PL/I provides nine categories of conditions. They are

• ERROR

• FIXEDOVERFLOW

• OVERFLOW

• UNDERFLOW

• ZERODIVIDE

• ENDFILE

• UNDEFINEDFILE

• KEY

• ENDPAGE

The first five categories include all arithmetic error conditions and
miscellaneous conditions that can arise during I/O setup and
processing. They also include conversion errors between the various
data types. The last four categories apply to a specific file that the
I/O system is accessing. Each condition has an associated subcode that
provides information about the source of the condition.

10.2 Condition Processing Statements
The ON, REVERT, and SIGNAL statements implement condition processing in
PL/I. The ON statement defines the actions that take place upon
encountering a condition. The REVERT statement disables the ON
statement. The SIGNAL statement allows your program to signal various
conditions.

10.2.1 ON and REVERT
The following code sequence illustrates the ON and REVERT statements
inside a DO-group.

PL/I Programmer's Guide 10.2 Condition Processing Statements

10-2

do while(^EOF);
on endfile(sysin)
EOF = '1'b;

revert endfile(sysin);
end;

Here, both the ON and the REVERT statement execute on each iteration.
Processing the ON and REVERT statements involves run time overhead. To
avoid this, code the same DO-group as follows:

on endfile(sysin)
EOF = 'true';
EOF = 'false';
do while(^EOF);

end;'

PL/I automatically executes the REVERT statement for any ON conditions
that you enable inside a procedure block when control passes outside
the block. The program shown in Listing 10-1 illustrates this concept.

 1 a
 2 a /* This program is nonfunctional. Its purpose is to
 3 a /* illustrate how PL/I executes the ON and REVERT
 4 a /* statements.
 5 a
 6 a auto-revert:
 7 b procedure options(main);
 8 b declare
 9 b i fixed,
 10 b sysin file;
 11 b
 12 c do i = 1 to 10000;
 13 c call P(i,exit);
 14 c exit:
 15 c end;
 16 b
 17 b P:
 18 c procedure (index,lab);
 19 c declare
 20 c (t, index) fixed,
 21 c lab label;
 22 c
 23 c on endfile(sysin)
 24 c goto lab;
 25 c
 26 c put skip list(index,':');
 27 c get list(t);
 28 c if t = index then
 29 c goto lab;
 30 c end P; /* implicit REVERT supplied here
 31 b
 32 b end auto-revert;

Listing 10–1. The REVERT Program

In the REVERT program, line 13 calls the procedure P and passes to it
the actual parameters i, the DO-group index, and the label constant

PL/I Programmer's Guide 10.3 Examples of Condition Processing

10-3

exit. The ON statement inside P executes every time the procedure is
called. Thus, REVERT has three possible ways to exit the procedure P.

If you enter an end-of-file character, CTRL-Z, REVERT executes the
enabled ON condition and sends control through the label variable lab
to the statement labeled exit. PL/I deactivates the procedure and
executes the REVERT statement because the GOTO statement transfers
control outside the environment of P.

The second possible exit follows the test on line 28. If you enter a
value equal to the index, then the GOTO statement on line 29 executes
and again sends control outside the environment of P.

Finally, if control reaches the end of P, PL/I executes the REVERT
statement and disables the ON condition set on line 23. No matter how
control leaves the environment of the procedure, PL/I always disables
the ON condition.

10.2.2 SIGNAL
The SIGNAL statement activates the ON-body, the body of statements
corresponding to a particular ON statement. Thus, processing a SIGNAL
statement has the same effect as when the run-time system signals the
condition.

The following code sequence illustrates the SIGNAL statement.

on endfile(sysin)
stop;

do while ('l'b)
get list(buff);
if buff = 'END' then

signal endfile(sysin);
put skip list(buff);

This code executes the SIGNAL statement whenever the GET LIST statement
reads the value END from the file SYSIN. Thus, the ON condition
receives control on a real end-of-file, or when the value END is read.

10.3 Examples of Condition Processing
The following two programs, FLTPOLY2 and COPYLPT, incorporate some
condition processing, so you can see how these concepts are
implemented.

10.3.1 The FLTPOLY2 Program
Listing 10-2 shows the FLTPOLY2 program. This is essentially the same
program listed in Section 7-1. The only difference is that it
incorporates condition processing to intercept the end-of-file
condition for the file SYSIN. If you run this program, you will see how
you can stop it with a CTRL-Z character. Unlike FLTPOLY, if you enter
all zeros, FLTPOLY2 simply evaluates the polynomial and prompts you for
more input.

 1 a
 2 a /* This program evaluates a polynomial expression */
 3 a /* using FLOAT BINARY data. It also traps the */
 4 a /* end-of-file condition for the file SYSIN. */

PL/I Programmer's Guide 10.3 Examples of Condition Processing

10-4

 5 a
 6 a fltpoly2:
 7 b procedure options(main);
 8 b %replace
 9 b false by '01b,
 10 b true by 111b;
 11 b declare
 12 b (x,y,z) float binary(24),
 13 b eofile bit(l) static initial(false),
 14 b sysin file;
 15 b
 16 b on endfile(sysin)
 17 b eofile = true;
 18 b
 19 c do while(true);
 20 c put skip(2) list('Type x,y,z:
 21 c get list(x,y,z);
 22 c
 23 c if eofile then
 24 c stop;
 25 c
 26 c put skip list(' 21);
 27 c put skip list(' x + 2y + z =',P(x,y,z));
 28 c end;
 29 b
 30 b P:
 31 c procedure (x,y,z) returns (float binary(24));
 32 c declare
 33 c (x,y,z) float binary(24);
 34 c return (x * x + 2 * y + z);
 35 c end P;
 36 b
 37 b end fltpoly2;

Listing 10–2. The FLTPOLY2 Program

10.3.2 The COPYLPT Program
Listing 10-3 shows an example of I/O processing using ON conditions.
The COPYLPT program copies a STREAM file from the disk to a PRINT file,
while properly formatting the output line with a page header and line
numbers. The program accepts console input to obtain the parameters for
the copy operation, and provides error exits and retry operations for
each input value. COPYLPT sets up various ON units to intercept errors
during the copy operation that takes place in the iterative DO-group
between lines 71 and 76. The following sections discuss the individual
parts of the program.

 1 a
 2 a /* This program copies a STREAM file on disk to a
 3 a /* PRINT file, and formats the output with a page
 4 a /* header, and line numbers.
 5 a
 6 b copy: procedure options(main);
 7 b
 8 b declare
 9 b (sysin, sourcefile, printfile) file,
 10 b (pagesize, pagewidth, spaces, linenumber) fixed,
 11 b (line character(14), buff character(254)) varying;

PL/I Programmer's Guide 10.3 Examples of Condition Processing

10-5

 12 b
 13 b put list('^z File to Print Copy Program');
 14 b
 15 b on endfile(sysin)
 16 b go to typeover;
 17 b
 18 b typeover:
 19 b put skip(5) list('How Many Lines Per Page?');
 20 b get list(pagesize);
 21 b
 22 b put skip list('How Many Column Positions?');
 23 b get skip list(pagewidth);
 24 b
 25 b on error(1)
 26 c begin;
 27 c put list('Invalid Number, Type Integer');
 28 c go to getnumber;
 29 c end;
 30 b getnumber:
 31 b put skip list('Line Spacing (1=Single)? ');
 32 b get skip list(spaces);
 33 b revert error(l);
 34 b
 35 b put skip list('Destination Device/File: ');
 36 b get skip list(line);
 37 b
 38 b open file(printfile) print pagesize(pagesize)
 39 b linesize(pagewidth) title(line);
 40 b
 41 b on undefinedfile(sourcefile)
 42 c begin;
 43 c put skip list('"',line,'" isn''t a Valid Name');
 44 c go to retry;
 45 c end;
 46 b retry:
 47 b put skip list('Source File to Print?
 48 b get list(line);
 49 b open file(sourcefile) stream environment(b(8000))
 50 b title(line);
 51 b on endfile(sourcefile)
 52 c begin;
 53 c put file(printfile) page;
 54 c stop;
 55 c end;
 56 b
 57 b on endfile(printfile)
 58 c begin;
 59 c put skip list('-g^g^g^g Disk is Full');
 60 c stop;
 61 c end;
 62 b
 63 b on endpage(printfile)
 64 c begin;
 65 c put file(printfile) page skip(2)
 66 c list('PAGE',pageno(printfile));
 67 c put file(printfile) skip(4);
 68 c end;
 69 b

PL/I Programmer's Guide 10.3 Examples of Condition Processing

10-6

 70 b signal endpage(printfile);
 71 c do linenumber = 1 repeat(linenumber + 1);
 72 c get file (sourcefile) edit(buff) (a);
 73 c put file (printfile)
 74 c edit(linenumber,'|',buff) (f(5),x(l),a(2),a);
 75 c put file (printfile) skip(spaces);
 76 c end;
 77 b
 78 b end copy;

Listing 10–3. The COPYLPT Program

The COPYLPT program begins by reading five values:

• the number of lines on each page

• the width of the printer line

• the line spacing, normally single- or double-spaced output

• the destination file or device

• the source file or device

While entering these parameters, you can type an end-of-file CTRL-Z
character and restart the prompting.

The Put LIST statement on line 13 writes the initial sign-on message.
Recall that PL/I allows control characters in string constants. Here,
the first character of the message is a CTRL-Z, which clears the screen
if you are using an ADM-3A TM CRT device. If you are using some other
device, you can substitute the proper character and recompile the
program.

The ON statement of line 15 traps the ENDFILE condition for the file
SYSIN, so that execution begins at typeover whenever the console reads
an end-of-file character.

Lines 19 through 23 read the first two parameters with no error
checking other than detecting the end-of-file. Line 25 however,
intercepts conversion errors for all operations that follow. If the GET
statement on line 32 reads a nonnumeric field, control passes to the
on-body between lines 26 and 29 that writes an error message, branches
to getnumber, and retries the input operation. Following successful
input of the parameter spaces, the REVERT statement on line 33 disables
the conversion error handling.

COPYLPT opens the input and output files between lines 38 and 50. The
program assumes that the output file can always be opened, but detects
an UNDEFINED input file, so you can correct the filename.

The program executes two ON ENDFILE statements between lines 51 and 61.
The first statement traps the input end-of-file condition and performs
a page eject on the output file. This ensures that the printer output
is at the top of a new page after completing the print operation. The
STOP statement included in this ON-unit completes the processing with
an exit.

The second ON-unit intercepts the end-of-file condition on the print
file. This can only occur if the disk file fills, so the unit prints
the message,

Disk is Full

PL/I Programmer's Guide 10.3 Examples of Condition Processing

10-7

and ends execution. The CTRL-G character sends a series of beeps to the
CRT as an alarm. The run-time system closes all files upon termination,
so that the print file is intact to the full capacity of the disk.

Line 63 begins an ON ENDPAGE unit that intercepts the end-of-page
condition for the print file. Whenever the run-time system signals this
condition, the ON-unit moves to the top of the next page, skips two
lines, prints the page number, and skips four more lines before
returning to the signal source. The SIGNAL statement on line 70 starts
the print file output on a new page by sending control to the ON-unit
defined on line 63. All subsequent ENDPAGE signals are generated by the
run-time system at the end of each page.

The DO-group beginning on line 71 initializes and increments a line
counter on each iteration. The GET EDIT statement on line 72 specifies
an A, alphanumeric, format. This fills the buffer with the next input
line up to, but not including, the carriage return/line-feed sequence.
The PUT EDIT statement on line 73 writes the line to the destination
file with a preceding line number, a blank, a vertical bar, and another
blank, resulting from the A(2) field. if the run-time system signals
the ENDPAGE condition while executing the PUT statement on line 75, the
format item SKIP(spaces) might not be processed.

Listing 10-4 shows the user interaction with the COPYLPT program.
Here, the source file is the LABELS.PLI program, and $LST, the physical
printer, is the destination.

A>copylpt
File to Print Copy Program

How Many Lines Per Page? 20

How Many Column Positions? 80

Line Spacing (1=Single)? Yes
Invalid Number, Type Integer
Line Spacing (1=Single)? 1
Destination Device/File: $lst
Source File to Print? copy.pil

" copy.pil " isn't a Valid Name
Source File to Print? copy.pli

Listing 10–4. Interaction with COPYLPT

Listing 10-5 shows two pages of output produced by the program.

PAGE 1

 1 |
 2 |/* This program copies one file to another using
 3 |/* buffered I/O.
 4 |
 5 |copy:
 6 | procedure options(main);
 7 | declare
 8 | (input-file,output_file) file;
 9 |
10 | open file (input_file) stream

PL/I Programmer's Guide 10.3 Examples of Condition Processing

10-8

11 | envirorLment(b(8192)) title('$l.$l');
12 |
13 | open file (output_file) stream output
14 | envirorunent(b(8192)) title('$2.$2');
15 | declare
16 | buff character(254) varying;
17 |
18 | do while('l'b);
19 | read file (input_file) into (buff);
20 | write file (output_file) from (buff);

PAGE 2

21 | end;
22 |end copy;

Listing 10–5. Output from COPYLPT

This example shows how you can incorporate error handling in your
programs to make them easier to use. In fact, you could enhance the
COPYLPT program to handle errors in the first two input lines, or
errors in the destination filename.

To gain further experience, you could go back over all the previous
examples and add ON-units to trap invalid input data and end-of-file
conditions. Modifying these small programs gives you a good foundation
in condition processing.

References: LRM, Section 9.1 to 9.3, 10.5, 11.3

End of Section 10

Section 11

11-1

11 Character String Processing
PL/I provides powerful character-string handling capabilities essential
in a commercial production language. This section presents two sample
programs that illustrate the use of some PL/I character-string
functions. After you read the text and study the sample programs, you
can make changes in the programs to expand your knowledge of PL/I.

11.1 The OPTIMIST Program
Our first example of string processing is a program called the
OPTIMIST. The OPTIMIST program turns a negative sentence into a
positive sentence. The OPTIMIST performs this task by using the
character-string facilities of PL/I.

Listing 11-1 shows the OPTIMIST program. The first segment, between
lines 12 and 23, defines the data items used in the program. The
remaining portion reads a sentence from the console, ending with a
period, and retypes the sentence in its positive form. Listing 11-2
shows a sample console interaction with the OPTIMIST. The OPTIMIST
works well if sentences are simple, but complicated sentences confuse
the program.

Line 13 gives the OPTIMIST vocabulary of negative words, with the
corresponding positive words on line 15. Thus, never becomes always,
and none becomes all. OPTIMIST replaces the word not with an empty
string. Lines 17 through 20 declare the upper- and lower case alphabets
for case translation in the sentence processing section.

OPTIMIST constructs each successive input sentence between lines 28 and
32, where the DO-group reads another word, and concatenates the word on
the end of the sentence. The SUBSTR test in the DO WHILE heading checks
for a period at the end.

Note: OPTIMIST can only accept a sentence whose maximum length is 254
characters. PL/I discards any additional characters.

After reading the complete sentence, OPTIMIST translates all upper case
characters to lower-case to scan the negative words. It performs this
case translation on line 33 by using the built-in TRANSLATE function.
OPTIMIST uses the built-in VERIFY function on line 34 to ensure that
the sentence consists only of letters and a period.

If the sentence consists of characters other than letters or a period,
the VERIFY function returns the first nonzero position that does not
match, and the OPTIMIST responds with:

Actually, that's an interesting idea.

If the VERIFY function returns a zero value, then the sentence contains
only translated lower-case letters and a period. In this case, control
transfers to the DO-group between lines 36 and 42. On each iteration,
OPTIMIST uses the built-in INDEX function to search for the next
negative word, given by negative (i). If found, it sets j to the
position of the negative word, and in the assignment statement on line
39, replaces it with the corresponding positive word. In this
assignment, the portion of the sentence that occurs before the negative
word is given by,

substr(sent,l,j-1)

PL/I Programmer's Guide 11.1 The OPTIMIST Program

11-2

while the replacement value for the negative word is given by,

positive(i)

and the portion of the sentence that follows the negative word being
replaced is given by:

substr(sent,j+length(negative(i)))

The OPTIMIST concatenates these three segments to produce a new
sentence with the negative word replaced by the positive word. It then
sends the resulting sentence to the console, and loops back to read
another input. Because all negative words have a leading blank, the
negative portion is always found at the beginning of a word. Thus,
OPTIMIST replaces nevermind with alwaysmind. This can produce
interesting results.

You could make at least three improvements to the OPTIMIST. First, if
the sentence exceeds 254 characters, the input scan never stops,
because the period is not found. You could include a check to ensure
that the newly appended word does not exceed the maximum size.

Second, there is no condition processing in the DO-group between lines
25 and 45, so the OPTIMIST never stops talking. It ends only through
input of a CTRL-Z, end-of-file, or CTRL-C, system warm start. You could
include an ON-unit to detect an end-of-file to end the program in a
reasonable fashion.

Finally, you could try to make the OPTIMIST smarter!

 1 a
 2 a /* This program demonstrates PL/I character string
 3 a /* processing by turning a negative sentence into a
 4 a /* positive one.
 5 a
 6 a optimist:
 7 b procedure options(main);
 8 b %replace
 9 b true by '1'b,
 10 b false by '0'b,
 11 b nwords by 5;
 12 b declare
 13 b negative (1:nwords) character(8) varying static initial
 14 b ('never',' none',' nothing',' not',' no'),
 15 b positive (1:nwords) character(10) varying static initial
 16 b ('always',' all',' something','',' some'),
 17 b upper character(28) static initial
 18 b ('ABCDEFGHIJKLMNOPQRSTUVWXYZ');
 19 b lower character(28) static initial
 20 b ('abcdefghijklmnopqrstuvwxyz');
 21 b sent character(254) varying,
 22 b word character(32) varying,
 23 b (i,j) fixed;
 24 b
 25 c do while(true);
 26 c put skip list('What''s up?');
 27 c sent = ' ';
 28 d do while
 29 d (substr(sentrlength(sent))
 30 d get list (word);
 31 d sent = sent word;

PL/I Programmer's Guide 11.1 The OPTIMIST Program

11-3

 32 d end;
 33 c sent = translate(sent,lower,upper);
 34 c if verify(sent,lower) ^= 0 then
 35 c sent = ' that''s an interesting idea.';
 36 d do i = 1 to nwords;
 37 d j = index(sent,negative(i));
 38 d if j ^= 0 then
 39 d sent = substr(sent,l,j-1)
 40 d positive(i) !!
 41 d substr(sent,j+length(negative(i)));
 42 d end;
 43 c put list('Actually,'!!sent);
 44 c put skip;
 45 c end;
 46 b
 47 b end optimist;

Listing 11–1. The OPTIMIST Program

A>optimist

What's up? Nothing is up.
Actually, something is up.

What's up? This is not fun.
Actually, this is fun.

What's up? Programs like this never make sense.
Actually, programs like this always make sense.

What's up? Nothing is easy that is not complicated.
Actually, something is easy that is complicated.

What's up? Nobody cares and its none of your business.
Actually, somebody cares and its all of your business.

What's up? The price of everything.
Actually, the price of everything.

What's up? Boy are you stupid.
Actually, boy are you stupid.

What's up? Dont get smart with me.
Actually, dont get smart with me.

What's up? You started it I didnt.
Actually, you started it i didnt.

What's up? No I did not.
Actually, some i did.

What's up? Thats better.
Actually, thats better.

What's up? You are hard to talk to.
Actually, you are hard to talk to.

What's up? There you go again.
Actually, there you go again.

PL/I Programmer's Guide 11.2 A Parse Function

11-4

What's up? Thats it I quit.
Actually, thats it i quit.

What's up? Stop that.
Actually, stop that.

What's up? If you dont stop I will pull your plug.
Actually, if you dont stop i will pull your plug.

What's up? You can not pull my plug.
Actually, you can pull my plug.

What's up? I know.
Actually, I know.

What's up? ^Z

END OF FILE (1), File: SYSIN=CON
Traceback: 09C5 0970 0157 4100 # 0909 0529 8090 0157
A>

Listing 11–2. Interaction with the OPTIMIST

11.2 A Parse Function
This section presents a more practical application of string
processing. It is often useful to have a separate subroutine in a
program that reads a line of input and separates it into individual
numbers and characters. Such a subroutine is called a parser, or a
free-field scanner. The FSCAN program, shown in Listing 11-3, gives an
example of a parser.

FSCAN demonstrates the embedded subroutine called GNT, Get Next Token,
which parses an input line into separate items called tokens. Once you
test GNT, you can extract it from this program and put it into a
production program where required. Section 13.4 uses GNT to compute
values of arithmetic expressions.

Listing 11-4 shows interaction with the FSCAN program. FSCAN reads a
line of input, parses the line into separate tokens, and then writes
the tokens back to the console, with surrounding apostrophes. The
tokens are just numeric values, such as 1234.56, or individual letters
and special characters. GNT bypasses all intervening blanks between the
tokens in the token scan.

The FSCAN program has three parts. The first part, lines 10 to 12,
defines the global data area called token, used by the GNT procedure.
The second part, lines 14 to 42, is the GNT procedure itself. The third
part is the DO-group between lines 44 and 47 that performs the test of
the GNT function procedure.

 1 a
 2 a /* This program tests the procedure called GNT, a */
 3 a /* free-field scanner, parser, that reads a line */
 4 a /* of input and breaks it into individual parts. */
 5 a
 6 a fscan:
 7 b proc options(main);
 8 b %replace

PL/I Programmer's Guide 11.2 A Parse Function

11-5

 9 b true by '1'b;
 10 b dcl
 11 b token char(80) var
 12 b static initial('');
 13 b
 14 b gnt:
 15 c proc;
 16 c dcl
 17 c i fixed,
 18 c line char(80) var
 19 c static initial('');
 20 c
 21 c line = substr(line,length(token)+1);
 22 d do while(true);
 23 d if line = '' then
 24 d get edit(line) (a);
 25 d i = verify(line,' ');
 26 d if i = 0 then
 27 d line = '';
 28 d else
 29 e do;
 30 e line = substr(line,i);
 31 e i = verify(line,'0123456789.');
 32 e if i = 0 then
 33 e token = line;
 34 e else
 35 e if i = 1 then
 36 e token = substr(line,1,1);
 37 e else
 38 e token = substr(line,1,i-1);
 39 e return;
 40 e end;
 41 d end;
 42 c end gnt;
 43 b
 44 c do while(true);
 45 c call gnt;
 46 c put edit(''''!!token!!'''') (x(1),a);
 47 c end;
 48 b end fscan;

Listing 11–3. The FSCAN Program

A>fscan
88+9.9
 '88' '+' '9.9'
1234567 89.10
 '1234567' '89.10'
1,2,3,4,5,6,7
 '1' ',' '2' ',' '3' ',' '4' ',' '5' ',' '6' ',' '7'
.... 666 7.7.7.
 '....' '666' '....' '7.7.7.'
^Z

End of File (7), File: SYSIN=CON
Traceback: 08a1 23D1 0143 00FF # 08AB 06B9 0143 01F5
A>

Listing 11–4. Interaction with the FSCAN Program

PL/I Programmer's Guide 11.2 A Parse Function

11-6

11.2.1 The GNT Procedure
GNT stores the input line in the character variable called line that is
initially empty due to the declaration on line 18. On the first call,
GNT extracts the first portion of line and places it in token, which
becomes the next input item. On each successive call, GNT removes the
previous token value from the beginning of a line before scanning the
next item.

For example, suppose the input line is,

~~~88*9.9

where ~ represents a blank character. On the first call to GNT, both
token and line are empty strings. The assignment on line 21 removes the
previous value of token and leaves line as an empty string. The DO-
group between lines 22 and 41 ensures that the line buffer is always
filled. If GNT encounters an empty buffer, the GET EDIT statement, line
24, immediately refills it. The call to the built-in VERIFY function on
line 25 returns the first position in line that is not blank.

If VERIFY returns a 0, then the entire line is blank and must be
cleared. The refill operation takes place on the next iteration.  If
the line is not entirely blank, then control transfers to the DO group
beginning on line 29.

11.2.2 The DO-Group
Processing in the DO-group takes place as follows. On entry, the value
of i is the first nonblank position of the line buffer. Thus, the
statement on line 30 removes the preceding blanks from line, so the
next token starts at the first position. GNT then calls the VERIFY
function to determine if the next item in line is a number.

The assignment statement on line 31 sets i to 0 if the entire buffer
consists of numbers and decimal points. Line 31 sets i to 1 if the
first item is not a number or period. It sets i to a larger value than
1 if the first item is a number that does not extend through the entire
line buffer. Thus, this sequence of tests, starting at line 32, either
extracts the entire line (i=0) , the first character of the line (i=1),
or the first portion of the line (i>1).

In the preceding example input line, on the first iteration GNT sets
line to,

~ ~ ~ 8 8 * 9 . 9

1 2 3 4 5 6 7 8 9

where the index 1 through 9, in line, is shown below each character.
On line 30, GNT removes the initial blanks, leaving line as:

8 8 * 9 . 9

1 2 3 4 5 6

Line 31 calls the VERIFY function that locates the first position
containing a nondigit or period character. In this case, VERIFY returns
the value 3, which corresponds to the * in position 3. As a result of
the tests, FSCAN executes line 38 and produces the equivalent of:

substr('88*9.9',1,2)

This results in a token value of 88, which is the next number in line.



PL/I Programmer's Guide 11.2 A Parse Function

11-7

On the next call, GNT removes token from line using the SUBSTR
operation on line 21 and leaves line as:

* 9 . 9

1 2 3 4

The VERIFY function on line 31 returns the value 1, because the leading
position of line is not a digit or a period. Line 36 extracts and
returns the first character of line as the value of token.

The third call to GNT gets the last token in line by first extracting
the first character of the line. This leaves line as:

9 . 9

1 2 3

This time, because all characters are either digits or periods, the
VERIFY function returns a 0 and GNT executes line 33. This results in a
token value of 9.9, which is the remainder of line.

The fourth call to GNT clears the previous value of token from line, so
that line is the empty string. This causes GNT to execute the GET EDIT
statement, line 24, and refill line from the console.  FSCAN proceeds
in this manner until you stop it with a CTRL-Z or CTRL-C input.

This simple parser has some obvious flaws. It does not trap the end-of-
file condition. You could include an ON-unit to detect this condition,
and return a null token value to indicate there is no more input.
Furthermore, GNT does not detect multiple period characters. This would
cause a subsequent conversion signal (ERROR(l)) if you attempt to
convert to a decimal value.'

These enhancements give you an improved version of GNT that you can
incorporate into any of your programs.

References: LRM Sections 3.2, 6.4, 6.8, 13.7

End of Section 11





Section 12

12-1

12 List Processing
For some programs it is difficult to determine the exact memory
requirements before the program runs. List processing is an example of
this kind of program because the number of data elements can vary
considerably while the program is running.

PL/I has subroutines in the Run-time Subroutine Library (RSL) that
dynamically manage storage allocation. When the operating system loads
a PL/I program into the Transient Program Area (TPA) or partition, PL/I
first initializes all the remaining free memory as a linked list. The
list elements contain information fields and pointers to other list
elements. A program dynamically allocates memory by using the ALLOCATE
statement and releases memory using the FREE statement. PL/I
continuously keeps all memory segments connected to one another by
using the linked-list mechanism.

The programs in this section illustrate list processing in two cases
where it is not easy to predetermine the amount of storage required.

12.1 Based and Pointer Variables
You can visualize a based variable as a template that fits over a
region of memory but has no storage directly allocated to it. A pointer
variable is just a two-byte value that holds the address of a variable.
When you use a pointer variable, you are programmatically placing this
based variable template over a particular piece of memory. The method
depends on the form of the based variable declaration.

If the based variable declaration does not include an implied base,
then you must qualify any reference to the based variable with a
pointer. If the based variable declaration includes an implied base,
then you can include a pointer qualifier in any reference to the based
variable, or you can simply use the implied pointer given in the
declaration as a base.

Consider the following example declaration:

declare
i fixed,
mat(0:5) fixed,
(p, q) pointer,
x fixed based,
y fixed based(p),
z fixed based(f());

PL/I allocates storage for the two variables i and mat because they are
not based variables. PL/I also assigns storage locations for the two
pointer variables p and q. However, the three variables x, y, and z are
declared as based variables, and they have no storage locations prior
to execution. Instead, PL/I determines their actual storage addresses
as the program runs. The variable x has no implied base, so every
reference to x must have a pointer qualifier such as:

p->x = 5;

or,

q->x = 6;



PL/I Programmer's Guide 12.1 Based and Pointer Variables

12-2

The first statement assigns the value 5 to the FIXED BINARY two-byte
variable at the memory location given by p. The second statement
assigns the value 6 to the location given by q.

The variable y, on the other hand, has an implied base, and you can
reference it with or without a pointer qualifier. The reference

y = 5;

equals

p->y = 5;

and thus, y = 5; and q->y = 6; have exactly the same effect as the two
preceding assignments to x.

The variable z, like the variable y, has an implied base. In this case,
the base is an invocation of a pointer-valued function with no
arguments. For example, the function f can take the form:

f:
procedure returns(pointer);
return (addr(mat(i)));
end f;

Using this definition of f, you can reference z as:

p->z = 5;

or

z = 6;

The first form is equivalent to those shown above, with the location
derived from the pointer variable p. The second form however, is an
abbreviation for:

f() -> z = 6;

In this case, PL/I evaluates the function f to produce the storage
address for the based variable z. This form has a twofold advantage.
First, the pointer-valued expression can be complex, and not restricted
to a simple pointer variable. Second, the code for function f appears
only once, rather than being duplicated at each variable reference.
This can save a considerable amount of space in a program.

Note: The implied base must be in the scope of the declaration for the
based variable.

The following incorrect code sequence illustrates this concept:

main:
procedure options(main);
declare

x based(p),
y based(q),
p pointer;

begin;
declare

(p,q) pointer;
x = 5;
y = 10;

end;
declare



PL/I Programmer's Guide 12.2 The REVERSE Program

12-3

q pointer;
end main;

Because the variables x and y are based on p and q, the pointers p and
q must be in the same or encompassing scope. Here the pointers p and q
are declared in the embedded BEGIN block that is a different
environment.

12.2 The REVERSE Program
Our first example of list processing is a program called REVERSE.  The
OPTIMIST program in Section 11 can accept a sentence with a maximum of
254 characters, the maximum string length. REVERSE, however, accepts
sentences of virtually any length by using a list structure instead of
a single character string. Instead of performing word substitution,
REVERSE simply reverses the input sentence.

Listing 12-1 shows the REVERSE program, which is divided into three
parts. The first part, lines 12 through 17, reads a sentence from the
console and writes the sentence back to the console in reverse order.
Each input sentence consists of a sequence of words up to 35 characters
in length. This is sufficient to hold,

supercalifragilisticexpialidocious

one of the longest words in the English language.

To simplify the input processing, REVERSE requires a space before the
period that ends the sentence. REVERSE also ends execution when you
type an empty sentence.

The second part of REVERSE is a separate subroutine, called read - it,
which starts on line 19. The third part is a subroutine called write
it, which begins on line 37. Making these functions separate
subroutines in the main program simplifies the overall structure.

Listing 12-2 shows the console interaction with REVERSE.

   1 a
   2 a /* This program reads a sentence and reverses it.
   3 a
   4 a reverse:
   5 b procedure options(main);
   6 b declare
   7 b sentence pointer,
   8 b 1 wordnode based (sentence),
   9 b 2 word character(35) varying,
  10 b 2 next pointer;
  11 b
  12 c do while('l'b);
  13 c call read it();
  14 c if sentence = null then
  15 c stop;
  16 c call write-it();
  17 c end;
  18 b
  19 b read-it:
  20 c procedure;
  21 c declare
  22 c newword character(35) varying,
  23 c newnode pointer;



PL/I Programmer's Guide 12.2 The REVERSE Program

12-4

  24 c sentence = null;
  25 c put skip list('What''s up? ');
  26 d do while('l'b);
  27 d get list(newword);
  28 d if newword then
  29 d return;
  30 d allocate wordnode set (newnode);
  31 d newnode->next = sentence;
  32 d sentence = newnode;
  33 d word = newword;
  34 d end;
  35 c end read-it;
  36 b
  37 b write-it:
  38 c procedure;
  39 c declare
  40 c p pointer;
  41 c put skip list('Actually, ');
  42 d do while (sentence ^= null);
  43 d put list(word);
  44 d p = sentence;
  45 d sentence = next;
  46 d free p->wordnode;
  47 d end;
  48 c put list('.');
  49 c put skip;
  50 c end write-it;
  51 b
  52 b end reverse;

Listing 12–1. The REVERSE Program

A>reverse

What's up? North is up

Actually, up is North

What's up? The rain in Spain falls mainly in the plain

Actually, plain the in mainly falls Spain in rain The

What's up? 3 + 5 = 8

Actually, 8 = 5 + 3

What's up?

A>

Listing 12–2. Interaction with the REVERSE Program

The REVERSE program stores each word in a separate area of memory,
obtained using the ALLOCATE statement on line 30. On each iteration of
the DO-group, the ALLOCATE statement obtains a unique section of the
free memory space sufficiently large to hold the wordnode structure
defined on line 8. The wordnode elements are linked together through
the next field of each allocation, and the beginning of the list is
given by the value of the sentence pointer variable.



PL/I Programmer's Guide 12.2 The REVERSE Program

12-5

Each allocation consumes 38 bytes. You can verify this by examining the
Symbol Table. The wordnode structure is 38 bytes long because word is
declared as CHARACTER(35) VARYING, and requires one byte to hold the
current length, 35 bytes to hold the string itself, and is followed by
a two-byte pointer value.

For example, given the input sentence,

I SHALL RETURN .

REVERSE executes the ALLOCATE statement three times, once for each word
in the list.

Suppose that these three memory allocations are found at addresses
1000, 2000, and 3000. The REVERSE program begins by reading the
sentence in the main DO-group in the read it procedure. It initializes
the sentence pointer to the null address (0000). Upon entering the DO-
group at line 26, the value of sentence appears as follows:

SENTENCE: 0000

REVERSE reads the first word with the GET statement on line 27, and
because the value is not a period, it allocates the first 38-byte area
to hold the word. As it constructs the sentence, REVERSE places the
pointer value of the sentence variable into the next field, and the
input word into the word field. The most recently read word then
becomes the new head of the list. After processing the word I, the list
appears as shown:

SENTENCE: 1000

1000:

REVERSE then proceeds through the loop again. This time, it reads the
word SHALL and allocates the second 38-byte area. The newly allocated
area becomes the new head of the list, with the resulting pointer
structure:

SENTENCE: 2000

2000: 1000:

X

REVERSE repeats the loop once again and processes the last word,
RETURN, and allocates the final 38-byte area, placing it at the head of
the list that results in the following sequence of nodes:

SENTENCE: 3000

3000: 2000: 1000:

The program follows the pointer structure from the sentence variable to
the node for RETURN, then to the node for SHALL, and finally to the
node for I, where it encounters an end-of-list value 0000.

REVERSE actually builds the list in reverse order. The DO-group in the
write_it procedure, lines 42 to 47, simply searches through the list,
starting at the sentence pointer, and prints each word it encounters.
As soon as the word is written, the FREE statement on line 46 releases
the 38-byte area allocated to it. The write it procedure moves the
sentence pointer variable to the next item in the list before it
executes the FREE statement to free the current element.

Note: Storage does not remain intact after it is released.



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-6

The advantage of the list structure is that the sentence can be
arbitrarily long, limited only by the size of available memory. The
disadvantage, of course, is that there is considerably more storage
consumed for sentences that could be represented by a 254-character
string.

12.3 A Network Analysis Program
The next example is extensive and illustrates two points. First, it
demonstrates the power of PL/I list-handling constructs. Second, it
shows how to divide a large, complex program into small, logically
distinct units, and thereby simplify the coding task.

The NETWORK program shown in Listing 12-4 performs a network analysis.
That is, it finds the shortest path between nodes in a network. The
user enters a network of cities and distances between the cities. Then
NETWORK constructs a connected set of nodes using list processing
structures. Upon demand from the user, NETWORK computes the shortest
path from all cities in the network to the assigned destination, and
then selectively displays particular optimal paths through the network.

It is easier to understand how the program operates if you first
examine the console interaction shown in Listing 12-3. First, you enter
a list of cities and distances between the cities, ending the entry
with a CTRL-Z. Entering a CTRL-Z triggers a display of the entire
network to aid in detection of input errors. NETWORK then prompts you
for a destination city, in this case, Tijuana, and a starting city, in
this case, Boise.

NETWORK then displays a best route. There can be several of equal
length. Next, NETWORK prompts for another starting city. If you enter a
CTRL-Z. NETWORK reverts to another destination prompt, leaving the
network intact. Interaction continues in this manner until you enter a
CTRL-Z in response to the destination prompt.  When this occurs,
NETWORK clears the network and returns to accept an entirely new
network of cities and distances. The entire program ends if you enter
an empty network at this point, for example, a CTRL-Z.

A>network

Type "Cityl, Dist, City2"
Seattle, 150, Boise
Boise, 300, Modesto
Seattle, 400, Modesto
Modesto, 150, Monterey
Modesto, 50, San-Francisco
San-Francisco, 200, Las-Vegas
Las-Vegas, 350, Monterey
Los-Angeles, 400, Las-Vegas
Bakersfield, 300, Monterey
Bakersfield, 250, Las-Vegas
Los-Angeles, 450, Tijuana
Tijuana, 700, Las-Vegas
Las-Vegas, 920, Boise
Pacific-Grove, 5, Monterey
^Z

Pacific-Grove
5 miles to Monterey



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-7

Tijuana :
700 miles to Las-Vegas
450 miles to LoS-Angeles

Bakersfield :
250 miles to Las-Vegas
300 miles to Monterey

Los-Angeles :
450 miles to Tijuana
400 miles to Las-Vegas

Las-Vegas :
920 miles to Boise
700 miles to Tijuana
250 miles to Bakersfield
400 miles to Los-Angeles
350 miles to Monterey
200 miles to San-Francisco

San-Francisco :
200 miles to Las-Vegas
50 miles to Modesto

Monterey :
5 miles to Pacific-Grove
300 miles to Bakersfield
350 miles to Las-Vegas
150 miles to Modesto

Modesto :
50 miles to San-Francisco
150 miles to Monterey
400 miles to Seattle
300 miles to Boise

Boise :
920 miles to Las-Vegas
300 miles to Modesto
150 miles to Seattle

Seattle :
400 miles to Modesto
150 miles to Boise

Type Destination Tijuana

Type Start Boise

1250 miles remain, 300miles to Modesto
950 miles remain, 50 miles to San-Francisco
900 miles remain, 200 miles to Las-Vegas
700 miles remain, 700 miles to Tijuana

Type Start ^Z
Type Destination Pacific-Grove
Type Start Seattle

555 miles remain,400 miles to Modesto
155 miles remain,150 miles to Monterey
5 miles remain, 5 miles to Pacific-Grove

Type Start ^Z
Type Destination ^Z
Type "City1, Dist, City2"
^Z
A>

Listing 12–3. Interaction with the NETWORK Program



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-8

12.3.1 NETWORK List Structures
NETWORK uses two data structures as list elements. The first structure
is called a city_node and corresponds to a particular city. It is
defined on line 16 of Listing 12-4. The following example shows the
city_node structure:

CITY_NODE: city_name
total-distance
investigate
city-list
route head

The city_name field holds the character-string value of the city's
name, while the total distance and investigate fields are used by the
shortest-distance procedure. The city_list and route – head pointer
values link together all the cities in the network.

The second structure is called a route node, and is defined on line 23.
A route - node establishes a single connection between a city and one
of its neighbors. You allocate several route - nodes for a city,
corresponding to the number of connections to its neighboring cities.
The route-node structure is shown below:

ROUTE-NODE: next_city
route-distance
route-list

The list of route - nodes associated with a particular city begins at
the pointer value called route head that is a part of the city_node
structure. The route is determined by following the route list pointer
to additional route - nodes, until you encounter a route node with a
null entry in the route list. Each route node also has a pointer value,
denoted by next_city, that leads to a neighboring city_node, along with
a route-distance field that gives the mileage to the next city.

The following example illustrates this concept. Assume Monterey is 350
miles from Las Vegas. NETWORK must allocate two city_nodes and two
route nodes with sample addresses to the left of each allocation as
follows. You can temporarily ignore the fields marked x in the diagram.

CITY-NODE CITY-NODE

1000 Monterey 2000 Las Vegas

xxxxxxx xxxxxxx

XXXXXXX XXXXXXX

xxxxxxx xxxxxxx

3000 4000

ROUTE-NODE ROUTE_NODE

3000 2000 4000 1000

350 350

A linked list, starting at city_head, leads to all cities in the
network. Given the preceding two cities, the list of cities appears as
follows:



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-9

CITY-HEAD

F-1 o-o T_~

CITY-NODE CITY-NODE

1000 Monterey 2000 Las Vegas

xxxxxxx xxxxxxx

xxxxxxx xxxxxxx

2000 0000

xxxxxxx

12.3.2 Traversing the Linked Lists
Several of the procedures in NETWORK use one particular form of an
iterative DO-group to traverse the linked lists. The statement on line
95 is typical:

do p = city_head repeat (p->city_list) while (p^=null);

The DO-group header successively processes each element of the linked
list starting at city_head until it encounters a null link, 0000. On
the first iteration, the DO-group sets the pointer variable p to the
value of the pointer variable city_head. In the example above, this
results in the assignment p = 1000.

On the next iteration, p takes on the value of the city_list field at
1000 that addresses Las Vegas. This results in the value p = 2000. on
the last iteration, p takes on the value of the city_list field based
at 2000, resulting in p = 0000. The DO-group then stops executing
because p is equal to null.

12.3.3 Overall Program Structure
Keeping in mind the preceding discussion, look at the overall program
structure. The top-level program calls occur in the DO group between
lines 31 and 38. The remainder of the program consists entirely of
nested subroutines.

NETWORK is logically divided into four parts:

•  The input section constructs and echoes the network of cities,
consisting of four procedures beginning on line 45: setup, connect,
find, and print_all.

•  The analysis of the shortest path between the cities takes place in
the shortest-distance procedure starting on line 164.

•  The shortest path display operations are split between the two
procedures print_paths and print_route, respectively.



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-10

•  The free all procedure clears the old network before loading a new
network.

Beginning on line 32, the main program calls setup to read the network.
If the city_list is empty, then NETWORK stops. Otherwise, it calls
print_all to display the network, and then calls print-Paths to prompt
and display the shortest routes. Upon return, NETWORK calls free - all
to release storage. This process continues until you enter an empty
network.

12.3.4 The Setup Procedure
The main loop in setup occurs between lines 54 and 58. On each
iteration, the GET LIST statement, line 55, reads a pair of cities with
a connecting distance. Next, setup calls the connect subroutine twice
to establish the connection in both directions between the cities. The
ON-unit on line 50 intercepts the CTRL-Z

12.3.5 The Connect Procedure
The connect procedure establishes a single routenode to connect the
first city to the second city. The connect procedure does this by
calling the find procedure twice, once for the first city and once for
the second city. The find procedure locates a city if it exists in the
network, or creates the city_node if it does not yet exist.  upon
return from find, the connect procedure creates and fills in the route-
node, lines 79 to 82.

In the previous example, the first call to connect establishes the
city_nodes for Monterey and Las Vegas, indirectly through the find
procedure, and then produces the route - node under Monterey only.  The
second call to connect establishes the route-node under Las Vegas.

12.3.6 The Find Procedure
The find procedure, starting at line 89, searches the city_list,
beginning at city_head, until it finds the input city or exhausts the
city_list. If the input city does not exist, find creates it between
lines 100 and 105. In any case, find returns a pointer to the requested
city_node.

12.3.7 The Print-All Procedure
The print_all procedure appears between lines 113 and 127. NETWORK
calls print_all after creating the network. This procedure starts at
city - head and displays all the cities in the city_list. As it visits
each city, print all also traverses and displays the route - head. Upon
compl~-tion of the print_all procedure, all city-nodes and route-nodes
have been visited and displayed.

12.3.8 The Print-Paths Procedure
The print_paths procedure reads a destination city on line 143 and
sends it to the shortest distance procedure. Upon return, print_paths
sets the total - distance field of each city_node to the total distance
from the destination city. You enter the starting city on line 148, and



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-11

print_paths sends it to the print_route procedure for the display
operation.

12.3.9 The Print-Route Procedure
The print_route procedure at line 214 displays the best route from the
input city to the destination. The procedure finds the best route as
follows: The total distance from the input city to the destination has
already been computed and stored in the total distance field. The
procedure obtains the first leg of the best route by finding a
neighboring city whose total distance field differs by exactly the
distance to the neighbor. I-E then displays the neighbor, moves to the
neighboring city, and repeats the same operation. Eventually, it
reaches the destination city and completes the display operation.

Line 221 finds the original city_node. Line 231 displays the remaining
distance, and the search for the first or next leg occurs between lines
233 and 244. On each iteration, line 236 tests to determine if a
neighbor has been found whose total distance plus the leg distance
matches the current city. If so, line 238 displays the leg distance and
the search terminates by setting q to null.

12.3.10 The Shortest-Distance Procedure
This procedure takes an input city, called the destination, and
computes the minimum total distance from every city in the network to
the destination. It then records this total at each city_node in the
total distance field. In calculating the minimum total distance, Fhe
procedure implements the following algorithm:

1. Initially mark all total - distance fields with infinity (32767 in
PL/I) to indicate that the node currently has no connection.

2. Set the investigate flag to false for each city. The investigate
flag marks a city_node that needs further processing.

3. Set the total distance to the destination at zero; all others are
currently set to infinity, but change during processing.

4. Set the investigate flag to true for the destination only.
5. Examine the city_list for the city_node that has the least total-

distance, and whose investigate flag is true. At first, only the
destination is found. When no city_node has a true investigate flag,
all processing is complete and all minimum total-distance fields
have been computed.

6. Clear the investigate flag for the city found in 4, and extract the
current value of its total distance field. Examine each of its
neighbors; if the current Total distance field plus the leg distance
is less than the total-distance field marked at the neighbor, then
replace the neighbor's total-distance field by this sum. Then mark
the neighbor for processing by setting its investigate flag to true.
After processing each neighbor, return to step 4.

The algorithm thus proceeds through the network, developing the
shortest path to any node, and as a result, visiting each city exactly
once. This is because the process is linear, and any additional nodes
do not significantly effect the time to analyze the network.



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-12

12.3.11 The Free-All Procedure
The final procedure, free all starting at line 251, returns the network
storage at the end of processing each network. The procedure visits and
then discards each city_node and the entire list of route-node
connections.

12.3.12 NETWORK Expansion
You can expand NETWORK in several ways. First, you can open a STREAM
file and read the graph from disk, because it is inconvenient to type
an entire network each time you run the program. You can also store
several networks on disk and retrieve them on command from the console.

   1 a
   2 a      /* This program finds the shortest path between nodes   */
   3 a      /* in a network. It has 8 internal procedures:          */
   4 a      /* SETUP, CONNECT, FIND, PRINT_ALL, PRINT_PATHS,        */
   5 a      /* SHORTEST_DISTANCE, PRINT_ROUTE, and FREE_ALL.        */
   6 a
   7 a      network:
   8 b          proc options(main);
   9 b          %replace
  10 b              true     by '1'b,
  11 b              false    by '0'b,
  12 b              citysize by 20,
  13 b              infinite by 32767;
  14 b          dcl
  15 b              sysin file;
  16 b          dcl
  17 b              1 city_node based,
  18 b                2 city_name   char(citysize) var,
  19 b                2 total_dist  fixed,
  20 b                2 investigate bit,
  21 b                2 city_list   ptr,
  22 b                2 route_head  ptr;
  23 b          dcl
  24 b              1 route_node based,
  25 b                2 next_city   ptr,
  26 b                2 route_dist  fixed,
  27 b                2 route_list  ptr;
  28 b          dcl
  29 b              city_head ptr;
  30 b
  31 c              do while(true);
  32 c              call setup();
  33 c              if city_head = null then
  34 c                  stop;
  35 c              call print_all();
  36 c              call print_paths();
  37 c              call free_all();
  38 c              end;
  39 b
  40 b          setup:
  41 c              proc;
  42 c              dcl
  43 c                  dist fixed,
  44 c                  (city1, city2) char(citysize) var;
  45 c              on endfile(sysin) go to eof;



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-13

  46 c              city_head = null;
  47 c              put skip list('Type "City1, Dist, City2"');
  48 c              put skip;
  49 d                  do while(true);
  50 d                  get list(city1, dist, city2);
  51 d                  call connect(city1, dist, city2);
  52 d                  call connect(city2, dist, city1);
  53 d                  end;
  54 c              eof:
  55 c              end setup;
  56 b
  57 b          connect:
  58 c              proc(source_city, dist, dest_city);
  59 c              dcl
  60 c                  source_city char(citysize) var,
  61 c                  dist fixed,
  62 c                  dest_city   char(citysize) var;
  63 c              dcl
  64 c                  (r, s, d) ptr;
  65 c              s = find(source_city);
  66 c              d = find(dest_city);
  67 c              allocate route_node set (r);
  68 c              r->route_dist = dist;
  69 c              r->next_city  = d;
  70 c              r->route_list = s->route_head;
  71 c              s->route_head = r;
  72 c              end connect;
  73 b
  74 b          find:
  75 c              proc(city) returns(ptr);
  76 c              dcl
  77 c                  city char(citysize) var;
  78 c              dcl
  79 c                  (p, q) ptr;
  80 d                  do p = city_head
  81 d                      repeat(p->city_list) while(p^=null);
  82 d                  if city = p->city_name then
  83 d                      return(p);
  84 d                  end;
  85 c              allocate city_node set(p);
  86 c              p->city_name  = city;
  87 c              p->city_list  = city_head;
  88 c              city_head     = p;
  89 c              p->total_dist = infinite;
  90 c              p->route_head = null;
  91 c              return(p);
  92 c              end find;
  93 b
  94 b          print_all:
  95 c              proc;
  96 c              dcl
  97 c                  (p, q) ptr;
  98 d              do p = city_head
  99 d                  repeat(p->city_list) while(p^=null);
 100 d              put skip list(p->city_name,':');
 101 e                  do q = p->route_head
 102 e                      repeat(q->route_list) while(q^=null);
 103 e                  put skip list(q->route_dist,'miles to',



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-14

 104 e                               q->next_city->city_name);
 105 e                  end;
 106 d              end;
 107 c          end print_all;
 108 b
 109 b          print_paths:
 110 c              proc;
 111 c              dcl
 112 c                  city char(citysize) var;
 113 c              on endfile(sysin) go to eof;
 114 d                  do while(true);
 115 d                  put skip list('Type Destination ');
 116 d                  get list(city);
 117 d                  call shortest_dist(city);
 118 d                  on endfile(sysin) go to eol;
 119 e                      do while(true);
 120 e                      put skip list('Type Start ');
 121 e                      get list(city);
 122 e                      call print_route(city);
 123 e                      end;
 124 d                  eol: revert endfile(sysin);
 125 d                  end;
 126 c              eof:
 127 c              end print_paths;
 128 b
 129 b          shortest_dist:
 130 c              proc(city);
 131 c              dcl
 132 c                  city char(citysize) var;
 133 c              dcl
 134 c                  bestp ptr,
 135 c                  (d, bestd) fixed,
 136 c                  (p, q, r) ptr;
 137 d                  do p = city_head
 138 d                      repeat(p->city_list) while(p^=null);
 139 d                  p->total_dist  = infinite;
 140 d                  p->investigate = false;
 141 d                  end;
 142 c              p = find(city);
 143 c              p->total_dist  = 0;
 144 c              p->investigate = true;
 145 d                  do while(true);
 146 d                  bestp = null;
 147 d                  bestd = infinite;
 148 e                      do p = city_head
 149 e                          repeat(p->city_list) while(p^=null);
 150 e                      if p->investigate then
 151 f                          do;
 152 f                          if p->total_dist < bestd then
 153 g                              do;
 154 g                              bestd = p->total_dist;
 155 g                              bestp = p;
 156 g                              end;
 157 f                          end;
 158 e                      end;
 159 d                  if bestp = null then
 160 d                      return;
 161 d                  bestp->investigate = false;



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-15

 162 e                      do q = bestp->route_head
 163 e                          repeat(q->route_list) while(q^=null);
 164 e                      r = q->next_city;
 165 e                      d = bestd + q->route_dist;
 166 e                      if d < r->total_dist then
 167 f                          do;
 168 f                          r->total_dist  = d;
 169 f                          r->investigate = true;
 170 f                          end;
 171 e                      end;
 172 d                  end;
 173 c              end shortest_dist;
 174 b
 175 b          print_route:
 176 c              proc(city);
 177 c              dcl
 178 c                  city char(citysize) var;
 179 c              dcl
 180 c                  (p, q) ptr,
 181 c                  (t, d) fixed;
 182 c              p = find(city);
 183 d                  do while(true);
 184 d                  t = p->total_dist;
 185 d                  if t = infinite then
 186 e                      do;
 187 e                      put skip list('(No Connection)');
 188 e                      return;
 189 e                      end;
 190 d                  if t = 0 then
 191 d                      return;
 192 d                  put skip list(t,'miles remain,');
 193 d                  q = p->route_head;
 194 e                      do while(q^=null);
 195 e                      p = q->next_city;
 196 e                      d = q->route_dist;
 197 e                      if t = d + p->total_dist then
 198 f                          do;
 199 f                          put list(d,'miles to',p->city_name);
 200 f                          q = null;
 201 f                          end; else
 202 e                      q = q->route_list;
 203 e                      end;
 204 d                  end;
 205 c              end print_route;
 206 b
 207 b          free_all:
 208 c              proc;
 209 c              dcl
 210 c                  (p, q) ptr;
 211 d                  do p = city_head
 212 d                      repeat(p->city_list) while(p^=null);
 213 e                      do q = p->route_head
 214 e                          repeat(q->route_list) while(q^=null);
 215 e                      free q->route_node;
 216 e                      end;
 217 d                  free p->city_node;
 218 d                  end;
 219 c              end free_all;



PL/I Programmer's Guide 12.3 A Network Analysis Program

12-16

 220 b
 221 b          end network;

Listing 12–4. The NETWORK Program

References: LRM Sections 3.4, 7.1-7.8, 8.2

End of Section 12



Section 13

13-1

13 Recursive Processing
Recursive processing occurs when an active procedure calls itself, or
is called by another active procedure. There are many programming
problems that lend themselves to this kind of construct.  This section
has three such problems. The first two illustrate the basic concepts,
and the last one uses recursion in a practical problem.

In a recursive procedure, a CALL statement, or function reference
contained in the procedure itself, reinvokes the procedure before
returning to the first level call. Therefore, you must declare all such
procedures with the RECURSIVE attribute so PL/I can properly save and
restore the local data areas at each level of recursive call.

Note: To maintain compatibility with full PL/I, you should not use
formal parameters on the left of an assignment statement in a PL/I
RECURSIVE procedure.

PL/I does not allow BEGIN blocks in RECURSIVE procedures. However , it
does allow nested procedures and DO-groups. The examples that follow
illustrate the proper formulation of RECURSIVE procedures.

13.1 The Factorial Function
The classic example of recursion is evaluation of the Factorial
function. This function, used throughout mathematics, is a good
illustration because you can define it by iteration and recursion.

The iterative definition of the Factorial function is

n! = (n)(n-l)(n-2) ... (2)(1)

where n! is the Factorial function, and n is a nonnegative integer.
Therefore:

(n-l)! = (n-1)(n-2) ... (2)(1)

You can define the Factorial function using the recursive relation:

n! = n(n-l)! (by definition, 0! = 1)

Evaluating the Factorial function using either iteration or recursion
produces the following values:

0! = 1
1!   (1) = 1
2!   (2) (1) = 2
3!   (3) (2) (1) = 6
4!   (4) (3) (2) (1) = 24
5!   (5) (4) (3) (2) (1) = 120
6!   (6) (5) (4) (3) (2) (1) = 720
7!   (7) (6) (5) (4) (3) (2) (1) = 5040
8!   (8) (7) (6) (5) (4) (3) (2) (1) = 40320
9!   (9) (8) (7) (6) (5) (4) (3) (2) (1) = 362880
10! (10) (9) (8) (7) (6) (5) (4) (3) (2) (1) = 3628800

Listing 13-1 shows a program called IFACT that computes values of the
Factorial function using iteration. The variable F is declared as a
FIXED BINARY data item that accumulates the value of the factorial up
to a maximum of 32767.



PL/I Programmer's Guide 13.1 The Factorial Function

13-2

Listing 13-2 shows the output from IFACT. IFACT gives the proper value
for the Factorial function up to 71, 5040. At this point, the variable
F overflows and produces improper results, but the output continues.

Note: PL/I does not signal FIXEDOVERFLOW for binary computations.

Listing 13-3 shows the program RFACT that performs the equivalent
evaluation of the Factorial function using recursion. For comparison,
RFACT uses the REPEAT form of the DO-group to control the test. RFACT
declares factorial as a RECURSIVE procedure, and calls the procedure at
the top level in the PUT statement on line 10. Line 19 contains an
embedded recursive call in the RETURN statement. Factorial returns when
the input value is zero. All other cases require one or more recursive
evaluations of factorial to produce the result. For example, 3!
produces the sequence of computations,

factorial(3) = 3*factorial(2)
factorial(2) = 2*factorial(l)
factorial(l) = 1*factorial(0)
factorial(0) = 1
1 1
2 1 1
3 2 1 1

producing the value 6. Listing 13-4 shows the output for the recursive
factorial evaluation produced by RFACT. The values again overflow
beyond 5040 due to the precision of the computations.

   1 a
   2 a /* This program evaluates the Factorial
   3 a /* function (n!) using iteration.
   4 a
   5 a ifact:
   6 b procedure options(main);
   7 b declare
   8 b (i, n, f) fixed;
   9 b
  10 c do i 0 by 1;
  11 c f = 1;
  12 d do n = i to 1 by -1;
  13 d fact = n * f;
  14 d end;
  15 c put edit('factorial(',i,')=',fact)
  16 c (skip, a,f(2), a, f(7));
  17 c end;
  18 b end ifact;

Listing 13–1. The IFACT Program

A>ifact

factorial( 0)= 1
factorial( 1)= 1
factorial( 2)= 2
factorial( 3)= 6
factorial( 4)= 24
factorial( 5)= 120
factorial( 6)= 720
factorial( 7)= 5040
factorial( 8)= -25216 the values are incorrect
factorial( 9)= -30336 from this point on



PL/I Programmer's Guide 13.1 The Factorial Function

13-3

factorial(10)= 24320
factorial(ll)= 5376
factorial(12)= -1024
factorial(13)= -13312
factorial(14)= 10240
factorial(15)= 22528
factorial(16)= -32768
factorial(17)= -32768
factorial(18)= 0
factorial(19)= 0

Listing 13–2. Output from the IFACT Program

   1 a
   2 a /* This program evaluates the Factorial
   3 a /* function (n!) using recursion.
   4 a
   5 a rfact:
   6 b procedure options(main);
   7 b declare
   8 b i fixed;
   9 c do i = 0 repeat(i+l);
  10 c put skip list('factorial(',i,')=',factorial(i));
  11 c end;
  12 b stop;
  13 b
  14 b factorial:
  15 c procedure(i) returns(fixed) recursive;
  16 c declare
  17 c i fixed;
  18 c if i = 0 then return (1);
  19 c return (i * factorial(i-1));
  20 c end factorial;
  21 b
  22 b end rfact;

Listing 13–3. The RFACT Program

A>fact

factorial( 0)= 1
factorial( 1)= 1
factorial( 2)= 2
factorial( 3)= 6
factorial( 4)= 24
factorial( 5)= 120
factorial( 6)= 720
factorial( 7)= 5040
factorial( 8)= -25216 the values are incorrect
factorial( 9)= -30336 from this point on
factorial(10)= 24320
factorial(11)= 5376
factorial(12)= -1024
factorial(13)= -13312
factorial(14)= 10240
factorial(15)= 22528
factorial(16)= -32768
factorial(17)= -32768
factorial(18)= 0
factorial(19)= 0



PL/I Programmer's Guide 13.2FIXED DECINAL and FLOAT BINARY Evaluation

13-4

Listing 13–4. Output from the RFACT Program

13.2 FIXED DECINAL and FLOAT BINARY Evaluation
The Factorial evaluation programs here illustrate an important point
about arithmetic calculations using different data types. Listing 13-5
shows a program called DFACT. It is the same recursive evaluation of
the Factorial function found in RFACT, but it uses FIXED DECIMAL data
with the maximum allowable precision. Listing 13-6 shows the output
from DFACT. The largest value produced by the program is

Factorial(17) = 355,687,428,096,000

At this point, the run-time system signals FIXEDOVERFLOW to indicate
that the decimal computation has overflowed the maximum 15 digit value.

Listing 13-7 shows the program FFACT that evaluates the Factorial
function using FLOAT BINARY data. Listing 13-8 shows the output from
FFACT. FFACT can compute the value of the function beyond 17.  PL/I
truncates the number of significant digits on the right to
approximately 7 equivalent decimal digits. Again, FFACT ends when the
run-time system signals the OVERFLOW condition because the program
produces an exponent value that cannot be maintained in the floating-
point representation.

   1 a
   2 a /* This program evaluates the Factorial function
   3 a /* (n!) using recursion and FIXED DECIMAL data.
   4 a
   5 a dfact:
   6 b procedure options(main);
   7 b declare
   8 b i fixed;
   9 C do i = 0 repeat(i+l);
  10 c put skip list('Factorial(',i,')=',factorial(i));
  11 c end;
  12 b stop;
  13 b
  14 b factorial:
  15 c procedure(i) returns(fixed decimal(15,0))
  16 c recursive;
  17 c declare
  18 c i fixed;
  19 c
  20 c if i = 0 then return (1);
  21 c return (decimal(i,15) * factorial(i-1));
  22 c end factorial;
  23 b
  24 b end dfact;

Listing 13–5. The DFACT Program

A>dfact

Factorial( 0)= 1
Factorial( 1)= 1
Factorial( 2)= 2
Factorial( 3)= 6
Factorial( 4)= 24
Factorial( 5)= 120



PL/I Programmer's Guide 13.2FIXED DECINAL and FLOAT BINARY Evaluation

13-5

Factorial( 6)= 720
Factorial( 7)= 5040
Factorial( 8)= 40320
Factorial( 9)= 362880
Factorial( 10)=3628800
Factorial( ll)=39916800
Factorial( 12)=479001600
Factorial( 13)=6227020800
Factorial( 14)=87178291200
Factorial( 15)=1307674368000
Factorial( 16)=20922789888000
Factorial( 17)=355687428096000
Factorial( 18)=
FIXED OVERFLOW (1)
Traceback: 0007 019F 0018 0000 # 2809 6874 0355 0141
A>

Listing 13–6. Output from the DFACT Program

   1 a
   2 a /* This program evaluates the Factorial function
   3 a /* (n!) using recursion and FLOAT BINARY data.
   4 a
   5 a pfact:
   6 b procedure options(main);
   7 b declare
   8 b i fixed;
   9 c do i = 0 repeat(i+l);
  10 c put skip list('Factorial(',i,')=',factorial(i));
  11 c end;
  12 b stop;
  13 b
  14 b factorial:
  15 c procedure(i) returns(float) recursive;
  16 c declare
  17 c i fixed;
  18 c if i = 0 then return (1);
  19 c return (i * factorial(i-1));
  20 c end factorial;
  21 b
  22 b end pfact;

Listing 13–7. The PFACT Program

A>pfact

Factorial( 0 1.OOOOOOE+00
Factorial( I 1.OOOOOOE+00
Factorial( 2 2.OOOOOOE+00
Factorial( 3 0.600000E+01
Factorial( 4 2.400000E+01
Factorial( 5 1.200000E+02
Factorial( 6 0.720000E+03
Factorial( 7 0.504000E+04
Factorial( 8 4.032000E+04
Factorial( 9 3.628799E+05
Factorial( 10 3.628799E+06
Factorial( 11 3.991679E+07
Factorial( 12 4.790015E+08
Factorial( 13 0.622702E+10



PL/I Programmer's Guide 13.3 The Ackermann Function

13-6

Factorial( 14 0.871782E+ll
Factorial( 15 1.307674E+12
Factorial( 16 2.092278E+13
Factorial( 17 3.556874E+14
Factorial( 18 0.640237E+16
Factorial( 19 1.216450E+17
Factorial( 20 2.432901E+18
Factorial( 21 0.510909E+20
Factorial( 22 1.124000E+21
Factorial( 23 2.585201E+22
Factorial( 24 0.620448E+24
Factorial( 25 1.551121E+25
Factorial( 26 4.032914E+26
Factorial( 27 1.088887E+28
Factorial( 28 3.048883E+29
Factorial( 29 0.884176E+31
Factorial( 30 2.652528E+32
Factorial( 31 0.822283E+34
Factorial( 32 2.631308E+35
Factorial( 33 0.868331E+37
Factorial( 34
OVERFLOW (1)
Traceback: 006C 13CB 019B 0000 # 8608 OB15 FB51 0141
A>

Listing 13–8. Output from the FFACT Program

13.3 The Ackermann Function
The PL/I run-time system maintains a 512-byte stack area to hold
subroutine return addresses and some temporary results. Under normal
circumstances, this stack area is sufficiently large for nonrecursive
and most simple recursive procedure processing. The program in this
section, however, illustrates multiple recursion using a stack depth
that can exceed the 512-byte default value.

The Ackermann function, denoted by A(m,n) , comes from Number Theory
and has the following recursive definition:

A(m,n+l) if m=0, otherwise
A(m,n)=A(m-1,1) if n=0, otherwise
A((m-1),A(m,n-1))

Listing 13-9 shows the ACK program that reads two values for the
maximum m and, n on line 11, and then evaluates the function for these
values. Listing 13-10 shows the program interaction.  Although the
Ackermann function returns a FIXED BINARY value, the program uses the
built-in DECIMAL function to control the size of the converted field in
the PUT statements on lines 12, 15, and 17.

In this example, ACK uses the STACK option on line 7 to increase the
size of the run-time stack from its default value, 512 bytes, to 2000
bytes.

Note: The STACK option is only valid with the MAIN option. You must
determine the value of the STACK option empirically, because the
compiler cannot compute the depth of recursion. If the allocated stack
size is too small and the stack overflows during recursion, the run-
time system outputs the message

FREE SPACE OVERWRITE



PL/I Programmer's Guide 13.4An Arithmetic Expression Evaluator

13-7

and then ends the program.

This kind of multiple recursion processing is CPU intensive. You should
experiment with some different values for max, and see if you can
determine how much stack is being used.

   1 a
   2 a /* This program evaluates the Ackermann function
   3 a /* A(m,n), and increases the size of the stack
   4 a /* because of the large number of recursive calls.
   5 a
   6 a ack:
   7 b procedure options(main,stack(2000));
   8 b declare
   9 b (m,maxm,n,maxn) fixed;
  10 b put skip list('Type max m,n: ');
  11 b get list(maxm,maxn);
  12 b put skip
  13 b list(' ',(decimal(n,4) do n=0 to maxn));
  14 c do m = 0 to maxm;
  15 c put skip list(decimal(m,4),':');
  16 d do n = 0 to maxn;
  17 d put list(decimal(ackermann(m,n),4));
  18 d end;
  19 c end;
  20 b stop;
  21 b
  22 b ackermann:
  23 c procedure(m,n) returns(fixed) recursive;
  24 c declare (m,n) fixed;
  25 c if m = 0 then
  26 c return(n+l);
  27 c if n = 0 then
  28 c return(ackermann(m-1,1));
  29 c return(ackermann(m-l,ackermann(m,n-1)));
  30 c end ackermann;
  31 b
  32 b end ack;

Listing 13–9. The ACK Program

A>ack

Type max m,n: 3,5

0 1 2 3 4 5
0: 1 2 3 4 5 6
1: 2 3 4 5 6 7
2: 3 5 7 9 11 13
3: 5 13 29 61 125 253
A>

Listing 13–10. Interaction with the ACK Program

13.4 An Arithmetic Expression Evaluator
One of the practical uses of recursion is the translation of statements
in a high-level programming language. This is because most languages
are defined recursively. In block-structured languages like PL/I for
example, DO-groups and BEGIN and PROCEDURE blocks can all be nested,



PL/I Programmer's Guide 13.4An Arithmetic Expression Evaluator

13-8

and the resulting structure lends itself easily to recursive
processing.

The next example illustrates how you can use recursion to evaluate
arithmetic expressions. Here is a simple, recursive definition of an
arithmetic expression: An expression is a simple number, or a pair of
expressions separated by a +, -, *, or /, and enclosed in parentheses.

Using this definition, the number 3.6 is an expression because it is a
simple number. Clearly,

(3.6 + 6.4)

is an expression because it consists of a pair of expressions that are
both simple numbers, separated by a +, and enclosed in parentheses.
Also,

(1.2 * (3.6 + 6.4))

is a valid expression because it contains the two valid expressions 1.2
and (3.6 + 6.4), separated by a * and enclosed in parentheses Using the
definition given above, the sequences,

3.6 + 6.4

(1.2 + 3.6 + 6.4)

are not valid expressions because the first is not enclosed in
parentheses, while the second is not a pair of expressions in
parentheses.

The preceding definition of an expression is somewhat restricted.  Once
a definition is established, it is easy to expand it to include more
complex expressions.

Listing 13-11 shows an expression evaluation program called EXPR1.  The
main processing takes place between lines 27 and 31 where EXPR1 reads
an expression from the console and types the evaluated result back to
you. Listing 13-12 shows the console interaction with EXPR1 where the
user enters several properly and improperly formed expressions.

   1 a
   2 a      /* This program evaluates an arithmetic expression      */
   3 a      /* using recursion. It contains two procedures. GNT     */
   4 a      /* obtains the input expression consisting of separate  */
   5 a      /* tokens, and EXP that performs the recursive          */
   6 a      /* evaluation of the tokens in the input line.          */
   7 a
   8 a      expression:
   9 b          proc options(main);
  10 b          dcl
  11 b              sysin file,
  12 b              value float,
  13 b              token char(10) var;
  14 b
  15 b          on endfile(sysin)
  16 b              stop;
  17 b
  18 b          on error(1)
  19 b              /* conversion or signal */
  20 c              begin;
  21 c              put skip list('Invalid Input at ',token);
  22 c              get skip;



PL/I Programmer's Guide 13.4An Arithmetic Expression Evaluator

13-9

  23 c              go to restart;
  24 c              end;
  25 b
  26 b          restart:
  27 c              do while('1'b);
  28 c              put skip(3) list('Type expression: ');
  29 c              value = exp();
  30 c              put skip list('Value is:',value);
  31 c              end;
  32 b
  33 b          gnt:
  34 c              proc;
  35 c              get list(token);
  36 c              end gnt;
  37 b
  38 b          exp:
  39 c              proc returns(float binary) recursive;
  40 c              dcl x float binary;
  41 c              call gnt();
  42 c              if token = '(' then
  43 d                  do;
  44 d                  x  = exp();
  45 d                  call gnt();
  46 d                  if token = '+' then
  47 d                      x = x + exp();
  48 d                  else
  49 d                  if token = '-' then
  50 d                      x = x - exp();
  51 d                  else
  52 d                  if token = '*' then
  53 d                      x = x * exp();
  54 d                  else
  55 d                  if token = '/' then
  56 d                      x = x / exp();
  57 d                  else
  58 d                  signal error(1);
  59 d                  call gnt();
  60 d                  if token ^= ')' then
  61 d                      signal error(1);
  62 d                  end;
  63 c              else
  64 c                  x = token;
  65 c              return(x);
  66 c              end exp;
  67 b
  68 b          end expression;

Listing 13–11. The EXPRESSION Program using Evaluator EXPR1

13.4.1 The Exp Procedure
The heart of the expression analyzer is the RECURSIVE procedure exp.
This procedure implements the recursive definition given above and
decomposes the input expressions piece by piece. The GNT, Get Next
Token, procedure reads the next element or token, a left or right
parenthesis, a number, or one of the arithmetic operators, in the input
line. GNT uses a GET LIST statement, so you must separate each token
with a blank or end-of-line character.



PL/I Programmer's Guide 13.4An Arithmetic Expression Evaluator

13-10

On line 41, exp calls GNT. GNT places the next input token into the
CHARACTER(10) variable called token. If the first item is a number,
then the series of tests in exp sends control to line 64. The
assignment to x automatically converts the value of token to a
floating-point value. Then exp returns this converted value to line 29,
where EXPR1 stores it into value, and subsequently writes it out as the
result of the expression.

If the expression is nontrivial, then exp scans the leading left
parenthesis on line 42, and enters the DO-group on line 43. EXPR1
immediately evaluates the first subexpression no matter how
complicated, and stores it into the variable x on line 44. EXPR1 then
checks token for an occurrence of +, -, *, or /. Suppose, for example,
token contains the * operator. The statement on line 53 recursively
invokes the exp procedure to evaluate the right side of the expression.
Upon return, it multiplies this result by the value of the left side
that was previously computed. EXPR1 then checks the balancing, right
parenthesis starting on line 60, and returns the resulting product as
the value of exp on line 64.

13.4.2 Condition Processing
EXPR1 performs condition processing in three places. The first ON unit,
line 15, intercepts an end-of-file, CTRL-Z, condition on the input
file, and executes a STOP statement. The second ON-unit, line 18,
receives control if an error occurs during conversion from character to
floating-point representation at the assignment on line 64. The ON-unit
displays the token in error, and then executes a GET SKIP statement to
clear the data to the end of the line. It then transfers control to the
restart label, which prompts for another input expression.

EXPR1 signals a condition when it encounters an invalid operator or an
unbalanced expression. If the operator is not a +, -, *, or /, then
EXPR1 executes line 58 and signals the ON-unit, line 18.  Again, the
ON-unit displays the error and transfers control to the restart label.
Similarly, a missing right parenthesis on line 60 signals the ERROR(l)
ON-unit to report the error and restart the program. When the program
restarts, PL/I discards the information on the current level of
recursion.

A>exprl

Type expression: ( 4 + 5.2 )

Value is: 0.920000E+01

Type expression: 4.5e-1

Value is: 4.499999E-01

Type expression: ( 4 & 5 )

Invalid input at &

Type expression: ( ( 3 + 4 ) * ( 10 / 8 ) )

Value is: 0.875000E+01

Type expression: ( 3 * 4 )



PL/I Programmer's Guide 13.4An Arithmetic Expression Evaluator

13-11

Value is: 1.200000E+01

Type Expression: ^Z

A>

Listing 13–12. Interaction with EXPR1

13.4.3 Improvements
The expression analyzer requires spaces between tokens in the input
line. Recall that Section 11.2 contains a more advanced version of GNT.

We incorporate this expanded version of GNT into the expression
analyzer, and also change the error recovery mechanism so that now line
27 discards the remainder of the current input when restarting the
program. Listing 13-13 shows the improved version called EXPR2, and
Listing 13-14 shows the console interaction with this improved
expression evaluator.

Even in EXPR2 there is room for expansion. First, you can add more
operators to expand upon the basic arithmetic functions. Also, you can
add operator precedence and eliminate the requirement for explicit
parentheses. Beyond that, you can add variable names and assignment
statements to turn the program into a BASIC interpreter!

   1 a      /*
   2 a      /* This program evaluates an arithmetic expression
   3 a      /* using recursion. It contains an expanded version
   4 a      /* of the GNT procedure that obtains an expression
   5 a      /* containing separate tokens. EXP then recursively
   6 a      /* evaluates the tokens in the input line.
   7 a      */
   8 a
   9 a      expression:
  10 b          proc options(main);
  11 b
  12 b          %replace
  13 b              true by '1'b;
  14 b
  15 b          dcl
  16 b              sysin file,
  17 b              value float,
  18 b              (token char(10), line char(80)) varying
  19 b                  static initial('');
  20 b
  21 b          on endfile(sysin)
  22 b              stop;
  23 b
  24 b          on error(1) /* conversion or signal */
  25 c              begin;
  26 c              put skip list('Invalid Input at ',token);
  27 c              token = ''; line = '';
  28 c              go to restart;
  29 c              end;
  30 b
  31 b          restart:
  32 b
  33 c              do while('1'b);



PL/I Programmer's Guide 13.4An Arithmetic Expression Evaluator

13-12

  34 c              put skip(3) list('Type expression: ');
  35 c              value = exp();
  36 c              put edit('Value is: ',value) (skip,a,f(10,4));
  37 c              end;
  38 b
  39 b          gnt:
  40 c              proc;
  41 c              dcl
  42 c                  i fixed;
  43 c
  44 c              line = substr(line,length(token)+1);
  45 d                  do while(true);
  46 d                  if line = '' then
  47 d                      get edit(line) (a);
  48 d                  i = verify(line,' ');
  49 d                  if i = 0 then
  50 d                      line = '';
  51 d                  else
  52 e                      do;
  53 e                      line = substr(line,i);
  54 e                      i = verify(line,'0123456789.');
  55 e                      if i = 0 then
  56 e                          token = line;
  57 e                      else
  58 e                      if i = 1 then
  59 e                          token = substr(line,1,1);
  60 e                      else
  61 e                          token = substr(line,1,i-1);
  62 e                      return;
  63 e                      end;
  64 d                  end;
  65 c              end gnt;
  66 b
  67 b          exp:
  68 c              proc returns(float binary) recursive;
  69 c              dcl x float binary;
  70 c              call gnt();
  71 c              if token = '(' then
  72 d                  do;
  73 d                  x  = exp();
  74 d                  call gnt();
  75 d                  if token = '+' then
  76 d                      x = x + exp();
  77 d                  else
  78 d                  if token = '-' then
  79 d                      x = x - exp();
  80 d                  else
  81 d                  if token = '*' then
  82 d                      x = x * exp();
  83 d                  else
  84 d                  if token = '/' then
  85 d                      x = x / exp();
  86 d                  else
  87 d                  signal error(1);
  88 d                  call gnt();
  89 d                  if token ^= ')' then
  90 d                      signal error(1);
  91 d                  end;



PL/I Programmer's Guide 13.4An Arithmetic Expression Evaluator

13-13

  92 c              else
  93 c                  x = token;
  94 c              return(x);
  95 c              end exp;
  96 b
  97 b          end expression;

Listing 13–13. Expression Evaluator EXPR2

A>expr2

Type expression: (2 * 14.5)

Value is: 29.0000

Type expression: ((2*3)/(4.3-1.5))
Value is: 2.1429

Type expression: zot
Invalid Input at z

Type expression: ((2*3)-5)
Value is: 1.0000

Type expression: (2 n5)
Invalid Input at n

Type expression: ^Z
A>

Listing 13–14. Interaction with EXPR2

References: LRM Sections 2.8 to 2.9, 3.1 to 3.2, 4.2, 9.1 to 9.4

End of Section 13





Section 14

14-1

14 Separate Compilation
All of the programs presented so far are single, complete units,
although many contain one or more internal procedures. It is often
useful to break larger programs into distinct modules to be
subsequently linked with one another and with the PL/I Run-time
Subroutine Library (RSL).

There are two reasons for separately compiling and linking programs in
this manner. First, large programs take longer to compile.  Smaller
segments can be independently developed, tested, and integrated,
requiring less overall compilation time for the entire project. A large
program can also overrun the memory space available for the Symbol
Table.

Second, particular subroutines are useful for your own application
programming. You can build your own library of subroutines and
selectively link them to your programs. Having such a library of common
subroutines greatly reduces the overall development time for any
particular program.

This section presents basic information required to link program
segments. It also presents an example of a program that is compiled as
two separate modules and then linked together.

14.1 Data and Program Declarations
You can direct separate modules to share data areas by including the
EXTERNAL attribute in the declaration of the data item. For example,
the statement,

declare x(10) fixed binary external;

defines a variable named x occupying 10 FIXED BINARY locations, 20
contiguous bytes, that is accessible by any other module that uses the
same declaration.

Similarly, the statement,

declare
1 s external,

2 y(10) bit(8),
2 z character(9) varying;

defines a structure named s, occupying a 20-byte area that is
accessible by any other modules that use the same declaration.

The following list summarizes basic rules that apply to the declaration
of external data:

•  EXTERNAL data items are accessible in any block in which you declare
them. The EXTERNAL attribute overrides the scope rules for internal
data.

•  Initialize an EXTERNAL data item in only one module. Other modules
can then reference the item.

Declare all EXTERNAL data areas with the same length in all modules in
which they appear.

In 8-bit implementations, EXTERNAL data items must be unique in the
first six characters because the linkage editing format truncates from



PL/I Programmer's Guide 14.2 ENTRY Data

14-2

the seventh character on. In 16-bit implementations, there are no
restrictions.

Avoid using ? symbols in variable names, because this character is used
as a prefix for names in the RSL.

Remember that PL/I automatically assigns the STATIC attribute to any
EXTERNAL data item.

14.2 ENTRY Data
ENTRY constants and ENTRY variables are data items that identify
procedure names and describe their parameter values. ENTRY constants
correspond to external procedures, or procedures defined in the main
procedure.

ENTRY variables take on ENTRY constant values when the program runs
through a direct assignment statement, or an argument- to-par ameter
assignment implicit in a subroutine call.

You invoke a procedure directly through a call to an ENTRY constant, or
indirectly by calling a procedure constant value held by an ENTRY
variable. As with label variables, you can also subscript ENTRY
variables.

The program shown in Listing 14-1 illustrates ENTRY data. The ENTRY
variable f declared on line 8 is an array containing three ENTRY
constants. Starting on line 12, the program initializes the subscripted
elements to the constants a, b, and c respectively.  Note that the
constant a corresponds to an externally compiled procedure (see Listing
3-1a).

On line 16, the DO-group prompts for input of a value to send to each
function, and then on line 19 calls each function once with the
invocation,

f(i)(x)

where the first parenthesis pair defines the subscript, and the second
encloses the list of actual arguments.

The declaration of ENTRY constants and ENTRY variables is similar to
FILE constants and FILE variables. PL/I assumes all formal parameters
declared as type ENTRY to be entry variables. In all other cases, an
entry is constant unless you declare it with the VARIABLE keyword.

The following rules apply to external procedure declarations:

•  You can access data items with the EXTERNAL attribute in any
procedure where they are declared EXTERNAL.

•  In 8-bit implementations, you must make external procedure names
unique in the first six characters (see Section 14.1).  In 16-bit
implementations, there are no restrictions.

•  Avoid using the ? symbol in procedure names.

Note: In addition, you must ensure that each parameter exactly matches
the procedure declaration, and that the RETURNS attribute exactly
matches the form returned for function procedures.

   1 a      /*
   2 a      /* This program illustrates ENTRY variables and



PL/I Programmer's Guide 14.3An Example of Separate Compilation

14-3

   3 a      /* constants.
   4 a      */
   5 a      call:
   6 b          proc options(main);
   7 b          dcl
   8 b              f (3) entry (float) returns (float) variable,
   9 b              g entry (float) returns (float);
  10 b          dcl
  11 b              i fixed, x float;
  12 b
  13 b          f(1) = sin;
  14 b          f(2) = g;
  15 b          f(3) = h;
  16 b
  17 c              do i = 1 to 3;
  18 c              put skip list('Type x ');
  19 c              get list(x);
  20 c              put list('f(',i,')=',f(i)(x));
  21 c              end;
  22 b          stop;
  23 b
  24 b          h:
  25 c              proc(x) returns (float);
  26 c              dcl x float;
  27 c              return (2*x + 1);
  28 c              end h;
  29 b          end call;

Listing 14–1. An Illustration of ENTRY Constants and variables

14.3 An Example of Separate Compilation
This section presents an example program consisting of two modules that
are compiled separately and then linked together. The two modules are
called MAININVT and INVERT, and are shown in Listings 14-2 and 14-3,
respectively. Compiling each of these modules and then linking them
together produces a program that interacts with the console to produce
the solution set for a system of simultaneous equations.

To understand how the programs work, first consider the following
system of equations in three unknowns:

a - b + c = 2 a - b + c = 3.5

a + b – c = 0 a + b – c = 1

2a – b = 0 2a – b = -1

The values,

a = 1 a = 2.25

b = 2 b = 5.50

c = 3 c = 6.75

constitute valid solutions to this system of equations, because:

1 - 2 + 3 = 2 2.25 - 5.50 + 6.75 = 3.50

1 + 2 - 3 = 0 2.25 + 5.50 - 6.75 = 1

2*1 – 2 = 0 2*2.25 - 5.50 = -1



PL/I Programmer's Guide 14.3An Example of Separate Compilation

14-4

The values 2,0,0 and 3.5,1,-1 are called solution vectors for the
matrix. The coefficients of the matrix are

1 -1 1

1 1 -1

2 -1 0

The MAININVT module interacts with the console to read the coefficients
and the solution vectors for a system of equations.  The INVERT module
performs the actual matrix inversion that solves the system of
equations.

The essential difference between these two modules is found in the
procedure heading. The MAININVT procedure is the main program because
it is defined with the MAIN option. The invert procedure is a
subroutine called by the main program. In Listing 14-2, the declaration
starting on line 15 defines invert as an EXTERNAL entry constant that
is then called on line 49.

On line 21, MAININVT declares the parameters for the invert procedure
as a matrix of floating-point numbers denoted by maxrow and maxcol.
Invert is defined with two additional FIXED(6) parameters, but does not
return a value.

The invert procedure, shown in Listing 14-3 has three formal parameters
called a, r, and c. They are defined on line 2 and declared in lines 7
and 8. INVERT takes the actual values of maxrow and maxcol,
corresponding to the largest possible row and column value, from a
%INCLUDE file, as indicated by the + symbols following the line number
at the left of both listings.

After you compile both of the modules, link them together with the
command:

A>link invmat=maininvt,invert

The linkage editor combines the two modules, selects the necessary
subroutines from the RSL, and creates the command file, named INVMAT.

Listing 14-4 shows the interaction with INVMAT. In this sample
interaction, the user first enters the identity matrix to test the
basic operations. The inverse matrix produced for this input value is
also the identity matrix.

The user then enters the preceding system of equations, together with
two solution vectors. The output values for this system are shown under
Solutions: and match the previously shown values. The second set of
solutions corresponds to the second solution vector input.

Finally, the user tests INVMAT with an invalid input matrix size, and
then ends the program by entering a zero row size.

   1 a      /*
   2 a          This program is the main module in a program that
   3 a          performs matrix inversion. It calls the entry
   4 a          constant INVERT which does the actual inversion.
   5 a      */
   6 a      maininvt:
   7 b          procedure options(main);
   8 b          %replace
   9 b              true   by '1'b,
  10 b              false  by '0'b;



PL/I Programmer's Guide 14.3An Example of Separate Compilation

14-5

  11+b          %replace
  12+b              maxrow by 26,
  13+b              maxcol by 40;
  14 b          dcl
  15 b              mat(maxrow,maxcol) float (24);
  16 b          dcl
  17 b              (i,j,n,m) fixed(6);
  18 b          dcl
  19 b              var char(26) static initial
  20 b              ('abcdefghijklmnopqrstuvwxyz');
  21 b          dcl
  22 b              invert entry
  23 b                  ((maxrow,maxcol) float(24), fixed(6), fixed(6));
  24 b
  25 b          put list('Solution of Simultaneous Equations');
  26 c              do while(true);
  27 c              put skip(2) list('Type rows, columns: ');
  28 c              get list(n);
  29 c              if n = 0 then
  30 c                  stop;
  31 c
  32 c              get list(m);
  33 c              if n > maxrow ! m > maxcol then
  34 c                  put skip list('Matrix is Too Large');
  35 c              else
  36 d                  do;
  37 d                  put skip list('Type Matrix of Coefficients');
  38 d                  put skip;
  39 e                      do i = 1 to n;
  40 e                      put list('Row',i,':');
  41 e                      get list((mat(i,j) do j = 1 to n));
  42 e                      end;
  43 d
  44 d                  put skip list('Type Solution Vectors');
  45 d                  put skip;
  46 e                      do j = n + 1 to m;
  47 e                      put list('Variable',substr(var,j-n,1),':');
  48 e                      get list((mat(i,j) do i = 1 to n));
  49 e                      end;
  50 d
  51 d                  call invert(mat,n,m);
  52 d                  put skip(2) list('Solutions:');
  53 e                      do i = 1 to n;
  54 e                      put skip list(substr(var,i,1),'=');
  55 e                      put edit((mat(i,j) do j = 1 to m-n))
  56 e                          (f(8,2));
  57 e                      end;
  58 d
  59 d                  put skip(2) list('Inverse Matrix is');
  60 e                      do i = 1 to n;
  61 e                      put skip edit
  62 e                          ((mat(i,j) do j = m-n+1 to m))
  63 e                          (x(3),6f(8,2),skip);
  64 e                      end;
  65 d                  end;
  66 c              end;
  67 b      end maininvt;

Listing 14–2. MAININVT - Matrix Inversion Main Program Nodule



PL/I Programmer's Guide 14.3An Example of Separate Compilation

14-6

   1 a      invert:
   2 b          proc (a,r,c);
   3+b          %replace
   4+b              maxrow by 26,
   5+b              maxcol by 40;
   6 b          dcl
   7 b              (d, a(maxrow,maxcol)) float (24),
   8 b              (i,j,k,l,r,c) fixed (6);
   9 c          do i = 1 to r;
  10 c          d = a(i,1);
  11 d              do j = 1 to c - 1;
  12 d              a(i,j) = a(i,j+1)/d;
  13 d              end;
  14 c          a(i,c) = 1/d;
  15 d              do k = 1 to r;
  16 d              if k ^= i then
  17 e                  do;
  18 e                  d = a(k,1);
  19 f                      do l = 1 to c - 1;
  20 f                      a(k,l) = a(k,l+1) - a(i,l) * d;
  21 f                      end;
  22 e                  a(k,c) = - a(i,c) * d;
  23 e                  end;
  24 d              end;
  25 c          end;
  26 b      end invert;

Listing 14–3. INVERT Matrix Inversion Subroutine

A>invmat
Solution of Simultaneous Equations

Type rows, columnst 3,3

Type Matrix of Coefficients
Row 1 :1 0 0
Row 2 :0 1 0
Row 3 :0 0 1

Type Solution Vectors

Solutions:
a=
b=
C=

Inverse Matrix is
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

Type rows, columns: 3,5

Type Matrix of Coefficients
Row 1 :1 -1 1
Row 2 :11 -1
Row 3 :2 -1 0
Type Solution Vectors
Variable a :2 0 0



PL/I Programmer's Guide 14.3An Example of Separate Compilation

14-7

Variable b :3.5 1 -1
Solutions:
a = 1.002.25
b = 2.005.50
C = 3.006.75
Inverse Matrix is

0.50 0.500.00
1.00 1.00-1.00
1.50 0.50-1.00

Type rows, columns: 41,0

Matrix is Too Large

Type rows, columns: 0

A>

Listing 14–4. Interaction with the INVMAT Program

References: LRM Sections 3.3.2, 5.1 to 5.4, 8.2

End of Section 14





Section 15

15-1

15 Decimal Computations
This section explains how PL/I handles decimal computations, stores
decimal data, and converts data types. Study this material thoroughly
because it is vital to understanding commercial processing.

15.1 A Comparison of Decimal and Binary Operations
The arithmetic with which we are most familiar uses the decimal number
system. All operations, such as addition and multiplication, are based
on the number ten, and involve the digits zero through nine. Computers,
however, perform arithmetic operations using binary, or base 2,
numbers. Computers use binary numbers because the ls and Os can be
directly processed by the on-off electronic switches found in
arithmetic processors.

Most programming languages allow you to write programs that process
base 10 constants and data items in simple and readable forms.  Because
the programs process decimal values, it is necessary to convert values
into a binary form on input and back to a decimal form on output. This
conversion from one type to another can introduce truncation errors
that are unacceptable in commercial processing. Thus, decimal
arithmetic is often required to avoid propagating errors throughout
computations.

In most programming languages, you have no control over the internal
format used for numeric processing. Specifically, two of the most
popular BASIC interpreters for microprocessors differ primarily in the
internal number formats. One uses floating-point binary, while the
other performs calculations using decimal arithmetic.

PASCAL compilers generally use floating- and fixed-point binary formats
with implementation-defined precision, while FORTRAN compilers always
use floating- or fixed-point binary.

However, COBOL was designed for use in commercial applications where
exact dollars and cents must be maintained throughout computations.
Therefore, COBOL processes data items using decimal arithmetic.

PL/I gives you a choice between representations, so that you can tailor
the data in each program to the exact needs of the particular
application. PL/I uses FIXED DECIMAL data items to perform commercial
functions, and FLOAT BINARY items for scientific processing where
computation speed is the most important factor, and truncation errors
are insignificant or ignored altogether.

The following two programs illustrate the essential difference between
the two data types:

Table 15–1. Difference of Decimal and Binary Data

decimal_comp:
procedure options(main);
declare

i fixed,
t fixed decimal(7,2);

t = 0;
do i = 1 to 10000;

t = t + 3.10;

binary_comp:
procedure options(main);
declare

i fixed,
t float binary(24);

t = 0;
do i = 1 to 10000;

t = t + 3.10;



PL/I Programmer's Guide 15.2 Decimal Representation

15-2

end;
put edit(t) (f(10,2));

end decimal_comp;

end;
put edit(t) (f(10,2));

end binary_comp;

Both of these programs sum the value 3.10 a total of 10,000 times.  The
only difference between these programs is that DECIMAL_COMP computes
the result using a FIXED DECIMAL variable, While BINARY_COMP performs
the computation using FLOAT BINARY.

DECIMAL_COMP produces the correct result 31000.00, while BINARY_COMP
produces the approximation 30997.30. The 2.70 difference is due to the
inherent truncation errors that occur when PL/I converts certain
decimal constants, such as 3.10, to their binary approximations.
DECIMAL_COMP produces the exact result because no conversion occurs
when using FIXED DECIMAL variables.

These two programs illustrate a more general problem. Suppose that
during a particular day, Chase Manhattan Bank processes 10,000 deposits
of $3.10. Using a program with FLOAT BINARY data, $3.10 cannot be
represented as a finite binary fractional expansion.  Therefore it is
approximated in FLOAT BINARY form as 3.099999E+00.  Each addition
propagates a small error into the sum, resulting in an extra $2.70
unaccounted for at the end of the day.

There are also situations where decimal arithmetic produces truncation
errors that can propagate throughout computations. For example, the
fraction 1/3 cannot be represented as a finite decimal fraction, and
thus is approximated as

0.3333333 ...

to the maximum possible precision. Such errors only occur when explicit
division operations take place.

The difficulty with FLOAT BINARY representations is that some decimal
constants expressed as finite fractional expansions in FIXED DECIMAL
cannot be written as finite binary fractions. PL/I necessarily
truncates these during conversion to FLOAT BINARY form.

There are both advantages and disadvantages in selecting FIXED DECIMAL
arithmetic instead of FLOAT BINARY. One advantage of FIXED DECIMAL
arithmetic is that it guarantees there is no loss of significant
digits. All digits are considered significant in a computation, so that
multiplication, for example, does not truncate digits in the least
significant positions. Another advantage is that FIXED DECIMAL
arithmetic precludes the necessity for exponent manipulation, and the
operations are relatively fast when compared to alternative decimal
arithmetic formats.

The disadvantage is that you must keep track of the range of values
that arithmetic operands can assume because all digits are considered
significant.

15.2 Decimal Representation
Decimal variables and constants have both a precision and scale factor.
The precision is the number of digits in the variable or constant,
while the scale factor is the number of digits in the fractional part.
For FIXED DECIMAL variables and constants, the precision cannot exceed
15, and the scale factor cannot exceed the precision.



PL/I Programmer's Guide 15.2 Decimal Representation

15-3

You can define the precision and scale factor of a variable in the
variable declaration. For example,

declare x fixed decimal(10,3);

declares the variable x to have precision 10 and scale factor 3.  The
compiler automatically derives the precision and scale factor of a
constant by counting the number of digits in the constant, and the
number of digits following the decimal point. For example, the constant

-324.76

has precision 5 and scale factor 2.

Internally, PL/I stores FIXED DECIMAL variables and constants as Packed
Binary Coded Decimal (BCD) pairs, where each BCD digit occupies either
the high or low-order four bits of each byte. The most significant BCD
digit defines the sign of the number. A zero denotes a positive number,
and a nine denotes a negative number in the 10's-complement form, as
described below. Because PL/I always stores numbers into 8-bit byte
locations, there can be an extra pad digit at the end of the number to
align it to an even byte boundary.  For example, PL/I stores the number
83.62 as

0 8 3 6 2

where each digit represents a 4-bit half-byte position in the 8-bit
value. PL/I stores the leading BCD pair lowest in memory.

PL/I stores negative numbers in 10's-complement form to simplify
arithmetic operations. A 10's-complement number is similar to a 2's-
complement binary representation, except the complement value of each
digit x is 9-x.

To derive the 10's-complement value of a number, form the complement of
each digit by subtracting the digit from 9, and add 1 to the final
result. Thus, the 10's complement of -2 is formed as follows:

(9 - 2) + 1 = 7 + 1 = 8

PL/I adds the sign digit to the number that then appears as the single-
byte value:

98

Look at an example. Suppose you want to add -2 and +3. PL/I represents
these numbers as follows:

+ FO 3]

PL/I ignores the integers beyond the preceding sign digit, and produces
the correct result 01. In the following discussion, we show negative
numbers with a leading - sign, with the assumption that the internal
representation is in 9's-complement form. Thus, we write the number -2
as

F- _2~

There is no need to explicitly store the decimal position in memory,
because the compiler knows the precision and scale factor for each
variable and constant. Before each arithmetic operation, the compiled
code causes the necessary alignment of the operands. In later examples,
we show a decimal point position to emphasize the effect of alignment.

For example, the number -324.76 appears as



PL/I Programmer's Guide 15.3 Addition and Subtraction

15-4

3 1 2 47:F~

When PL/I prepares this value for arithmetic processing, it first loads
it into an 8-byte stack frame, consisting of 15 BCD digits with a high-
order sign. In this case, the -324.76 is shown as

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 3 1 2 4 1 7 6

In ordinary arithmetic, when beginning each operation you must properly
align the operands for that operation and, upon completion, you must
decide where the resulting decimal point appears.

In PL/I, the compiler performs the alignment and accounts for the
decimal point position, but it is useful for you to imagine what is
taking place, so you can avoid overflow or underflow conditions. In
some cases, you might want to force a precision or scale factor change
during the computation using the DECIMAL or DIVIDE built-in functions.
The sample programs discussed in the following sections give examples
of these functions.

15.3 Addition and Subtraction
In PL/I, addition and subtraction are functionally equivalent. In
subtraction, PL/I first forms the 10's complement of the subtrahend and
then performs the addition. Given two numbers x and y, with precision
and scale factor (p,q) and (p2,q2), respectively, the addition
operation proceeds as follows.

First, PL/I loads the two operands onto the stack and then aligns them
by shifting the operand with the smaller scale factor to the left until
the decimal positions are the same. Given that the scale factor of x is
greater than the scale factor of y, y is shifted q, - q2 positions to
the left, with zero values introduced in the least significant
positions.

After alignment, y has precision p,+(q,-q2) and scale factor q,.  PL/I
signals a FIXEDOVERFLOW condition if significant digits are shifted
into the sign position during the alignment process.

Here is a specific example. Suppose x = 31465.2437 and y = 9343.412 so
that x has precision p, = 9 and scale q, = 4, while y has precision p,
= 7 and scale factor q2 = 3. Before alignment, the numbers appear as

9 ---------- 4W

x + 0 0 0 0 0 0 3 1 4 6 5 A 2 4 3 7

-4-4 --- 4~

7.

y + 0 0 0 0 0 0 0 0 9 3 4 3A4 1 2

--&-3-w-

PL/I aligns y with x by shifting ql-q2 = 4-3 1 positions to the left,
producing

x = + 0 0 0 0 0 0 3 1 4 6 5 A 2 4 3 7

4

y = + 0 0 0 0 0 0 0 9 3 4 3 4 1 2 0



PL/I Programmer's Guide 15.3 Addition and Subtraction

15-5

The number of digits in the whole part of x is p,-q,, while the whole
part of y contains P2-q2 digits,

-*-pl - q 1 ~ 5 --1.,

3 1 4 6 5

-0-P 2 - q2 ~ 4-p

9 3 4 3

so the sum must contain p,-ql = 5 digits in the whole part:

3 1 4 6 5

+ 9 3 4 3

4 0 8 0 8

-*- 5

There is a possibility that some values could produce an overflow,
requiring one extra digit in the whole part:

9 9 9 9 9

+ 9 9 9 9 9

F119 9 9 9 8

(p, - qj) + = 6-p-

The total number of digits in the sum of x and y is the number of
digits in the whole part, (pl-q,)+1=6, plus the number of digits in the
fraction, given by qj, resulting in a precision of

(pi-q,) + 1 + q, = p, + 1

Given two values x and y, of arbitrary precision and scale factor, you
can use the specific case shown above to derive the form of the
resulting precision and scale factor. First, the scale must be the
greater of q, and q21 given by,

max (ql,q2)

and the resulting precision must have max(q, q2) fractional digits.

Second, the whole part of x contains pj-qj digits, while the whole part
of y contains P2-q2 digits. The result contains the larger of pi-q, and
P2-q2 digitsr plus the fractional digits, along with one overflow
digit, for a total of

max (pl-q,fP2-q2) + max (ql,q2) + 1

digit positions.

Because the precision cannot exceed 15 digits, the resulting precision
must be the following:

min(15,max(p,-q,,p,-q,)+max(ql,q2)+')

digits.

The precision and scale factor of the resulting addition or subtraction
written as a pair (p',ql) is the following:



PL/I Programmer's Guide 15.4 Multiplication

15-6

P I

IN

min(15,max(pl-q,,p~-q2)+max(q,,q2)+l), max(q,,q,)

Using the preceding example:

9 -------------- W

..*.- 4

x + 0 0 0 0 0 0 3 1 4 6 5 A 2 4 3 7

y + 0 0 0 0 0 0 0 9 3 4 3 A 4 1 4 2 0

p, + (qz - q 1 8

x + y + 0 0 0 0 0 0 4 0 8 0 8A6 5 5 7

--*- 4

The precision (10,4) shown in the diagram is derived using the
Expression

pf qI

min(15,max(9-4,7-3)+max(4,3)+l), max(4,3)

or

min(15,max(5,4)+4+1), 4 (min(15,10),4) (10,4)

15.4 Multiplication
Evaluating the precision and scale factor for multiplication is simpler
than addition and subtraction because PL/I does not have to align the
decimal point before the multiplication. Given two operands x and y
with precision and scale factor (pl,q,) and (p,, q2) respectively, PL/I
multiplies the two operands digit by digit to produce the result.

Just as in ordinary hand calculations, the number of decimal places in
the result is the sum of the scale factors q, and P2. The total number
of digits in the result is the sum of the precisions of the two
operands. To conform to the PL/I Subset G standard, PL/I includes one
additional digit position in the final precision. The precision and
scale factor of the result (pl,q') is given by the following:

p I q1

(min(15rp,+P2+1)tql+q2)

Suppose that x = 924.5 and y = 862.33, with the precision and scale
factor values (4,1) and (5,2):

x + 0 0 0 0 0 0 0 0 0 0 0 9 2 4 A 5

y + 0 0 0 0 0 0 0 0 0 0 8 6 2 A 3 3

The product of the digits of x and y is shown with the resulting
precision and scale factor:

'0

x * y = + 0 0 0 0 0 0 7 9 7 2 2 4 A 0 8 5

*- 3 --,W

where PL/I computes the precision and scale factor as



PL/I Programmer's Guide 15.5 Division

15-7

(min(15,4+5+1),1+2) = (min(15,10),3) = (10,3)

PL/I signals the FIXEDOVERFLOW condition if the product contains more
than 15 significant digits. In the previous section, where x =
31465.2437 and y = 9343.412, the product x*y has precision 17, causing
FIXEDOVERFLOW.

In this particular case, you must apply the DECIMAL function to reduce
the number of significant digits in either x or y. The computation is
carried out as

DECIMAL(x,9,3) * y

which loads the stack with the two following values before the
multiplication takes place:

DECIMAL(x,9,3) + 0 0 0 0 0 0 0 3 1 4 6 5 A 2 4 3

y + 0 0 0 0 0 0 0 0 9 3 4 3 A 4 1 2

The precision and scale factor of the product is the following:

x * y = + 2 9 3 9 9 2 7 2 9 A 0 2 9 1 1 6

6

PL/I first computes the precision as p,+p,+l = 16, and then reduces
this to the maximum 15 digit precision by the following:

min(15,pl+p2+1) = min(15,16) = 15

When performing multiplication, it is your responsibility to ensure
that the precisions of the operands involved do not produce overflow.
You can explicitly declare the precision and scale factor of the
variables involved in the computation, or apply the DECIMAL function to
reduce the precision of a temporary result.

15.5 Division
Division is the only one of the four basic arithmetic operations that
can produce truncation errors. Therefore each division operation
produces a maximum precision value consisting of 15 decimal digits, and
a resulting scale factor that depends upon the scale factors of the two
operands.

Assuming that x and y have precision and scale factor (pllql) and (P2
q,) respectively, and that x is to be divided by y, the division
operation takes place as follows.

First, PL/I shifts x to the extreme left by introducing 15-p, zero
values on the right, leaving the dividend on the stack as

- P I *--l 5 - P 1 -

x x . . . x x 0 0 . . . 0 0

A .*-q, ---s.

PL/I then shifts the decimal point of x right by an amount q2 to
properly align the decimal point in the result, producing the following
operands:

-*-PI - -.*- 15 - p,

x x . . . x x 0 0 . . . 0 0

'J'q, - q2~



PL/I Programmer's Guide 15.5 Division

15-8

0 0 0 0 y y y y y

A

,oq2"-

The significant digits of y then continuously divide the significant
digits of x until the operation generates 15 decimal digits.

In the preceding diagram, the number of fractional digits produced by
the division is determined by the placement of the adjusted decimal
point in x. The field following the decimal point contains (q1-q.) plus
(15-p, ) positions, yielding the following precision and scale factor
for the result of the division:

(15, (q1-q2)+(l5-p1)) or (15,15-p1+q1-q2)

Suppose x = 31465.243, and y = 9343.41, have precision and scale factor
values of (8,3) and (6,2), respectively. The value x when loaded on the
stack appears as the following:

8

x = + 0 0 0 0 0 0 0 3 1 4 6 5A 2 4 3

PL/I then shifts the value of x to the extreme left and loads the value
of y, producing the values:

-W- 8

.q- 3 15 - 8 = 7

x + 3 1 4 6 5 A 2 4 3 0 0 0 0 0 0 0

y + 0 0 0 0 0 0 0 0 0 9 3 4 3A4 1

A*- 2 -0

-W- 6

The imaginary decimal points are shifted to the right by two positions
to properly align the decimal point in the result, producing

8 ------ 7

x + 3 1 4 6 5 2 4 3 0 0 0 0 0 0 0

~-f)

y + 0 0 0 0 0 0 0 0 0 9 3 4 3 4 1 A

-*- 6

The six significant digits of y divide the significant digits of x with
the following result:

15 --

x/y = + 0 0 0 0 0 0 3A3 6 7 6 4 0 1 8

-..*- 8

In this case, the precision and scale factor of the result is given by

(15,(15-pl+ql-q,) = (15,15-8+3-2) = (15,8)

The most important consideration in decimal division is generating
enough digits in the fractional part for the computation being
performed. This is done in two ways.



PL/I Programmer's Guide 15.5 Division

15-9

First, when aligning the dividend, PL/I pads with zeros and provides
15-p, fractional digits. Thus, dividend values with small precision
generate more fractional digits.

Second, if q, is greater than q2, then PL/I generates (ql,-q2)
additional fractional digits as shown above. If on the other hand, the
dividend contains fewer fractional digits than the divisor, then q, is
less than q2 and (q2-ql) fractional digits are consumed.

The case of q, = q2 occurs quite often. In this particular situation,
the number of fractional digits depends entirely upon the precision of
the divisor, and results in 15-p, fractional digits.

You might also want to truncate or extend the result with zeros using
the DIVIDE built-in function during a particular computation (see the
PL/I Language Reference Manual, Section 4.2.5) The function has the
form:

DIVIDE (x,y,p,q)

where p and q are literal constants. They can appear as an expression
or subexpression in an arithmetic computation, and have the same effect
as the statement:

DECIMAL (x/y,p,q)

As before, y divides x, but the precision and scale factor values are
forced to (p,q) . PL/I carries out the computation as described, and
then shifts the resulting value by the appropriate number of digits to
obtain the desired precision and scale factor.

References: LRM Sections 3.1.2, 4.2

End of Section 15





Section 16

16-1

16 Commercial Processing
Commercial applications of PL/I use decimal calculations. The four
programs in this section illustrate PL/I built-in functions, EDIT
formats including picture, and the method of breaking down a complex
program into small, logically distinct procedures.

16.1 A Simple Loan Program
Listing 16-1 shows the LOAN1 program that computes a loan payment
schedule using three input values corresponding to the loan principal
(P) , the yearly interest rate (i) , and monthly payment (PMT) . LOAN1
continuously applies the following algorithm until the remaining
principal reaches zero, and the loan is paid off.

The algorithm is

1. Each month, increase the starting principal P by an amount fixed by
the interest rate.

P = P + (i * P)

2. Each month, reduce the remaining principal by the payment amount.
P = (P + (i * P)) - PMT

LOAN1 assumes that the principal does not exceed $999,999,999.99. Thus,
the declaration on line 12 defines P as a FIXED DECIMAL variable with
precision 11 and scale factor 2. The payment does not exceed $9,999-99,
so PMT is declared as FIXED DECIMAL with precision 6 and scale factor
2. Finally, LOAN1 defines the interest rate i as FIXED DECIMAL(4,2),
allowing numbers as large as 99.99%. The two variables m and y
correspond to the month and year, beginning at the first month of the
first year.

LOAN1 reads the initial values between lines 17 and 22. In this
example, LOAN1 does not perform any range checking. Thus it can accept
negative values, and can process payment values that cannot pay off the
loan. These checks would have to be made in a real application
environment.

On each iteration, LOAN1 increases the month until it reaches the 12th
month, at which point the built-in MOD function, line 26, increments
the year. LOAN1 then displays the current principal P on line 32, and
adds the monthly interest on the following line.

LOAN1 performs the computation on line 33. The variable i has precision
and scale factor (4,2) , while the variable P has precision and scale
factor (11,2). Therefore, the multiplication i * P yields a temporary
result with precision and scale factor (15,4).

Next, the division by the literal constant 1200 is required because the
interest rate is expressed as a percentage (division by 100) over a
one-year period (division by 12). The result of the division (i *
P)/1200 has precision 15, because the constant 1200 has precision and
scale factor (4,0). PL/I computes precision and scale factor in
division as (15,15-15+4-0). Finally, LOAN1 uses the built-in function
ROUND to round the second decimal place, the cents position.

In the last month, if the remaining principal is less than the payment,
LOAN1 performs the test on line 34. if the test is true, line 35
changes the payment to equal the principal. Line 36 prints the payment,



PL/I Programmer's Guide 16.1 A Simple Loan Program

16-2

and finally, line 37 reduces the principal by the payment using the
assignment statement:

P = P - PMT;

Listing 16-2 shows the output from LOANI using an initial loan of $500,
interest rate of 14%, and payment of $22.10 per month.

   1 a
   2 a /* This program produces a schedule of loan payments
   3 a /* using the following algorithm: if P = loan payment,
   4 a /* I = interest, and PMT is the monthly payment then
   5 a /* P = (P + (I * P) - PMT).
   6 a
   7 a loan1:
   8 b procedure options(main);
   9 b declare
  10 b M fixed binary,
  11 b Y fixed binary,
  12 b P fixed decimal(11,2),
  13 b PMT fixed decimal(6,2),
  14 b I fixed decimal(4,2);
  15 b
  16 c do while('1'b);
  17 c put skip list('Principal 1);
  18 c get list(P);
  19 c put list('Interest
  20 c get list(I);
  21 c put list('Payment
  22 c get list(PMT);
  23 c M = 0;
  24 c Y = 0;
  25 d do while (P > 0);
  26 d if mod(m,12) = 0 then
  27 e do;
  28 e Y = Y + 1;
  29 e put skip list('Year',y);
  30 e end;
  31 d M = M + 1;
  32 d put skip list(M,P);
  33 d P = P + round(I * P / 1200, 2);
  34 d if P < PMT
  35 d then PMT = P;
  36 d put list(PMT);
  37 d P = P - PMT;
  38 d end;
  39 c end;
  40 b
  41 b end loan1;

Listing 16–1. The LOAN1 Program

A>loan1

Principal 500
Interest 14
Payment 22.10

Year1
1 500.00 22.10



PL/I Programmer's Guide 16.2 Ordinary Annuity

16-3

2 483.73 22.10
3 467.27 22.10
4 450.62 22.10
5 433.78 22.10
6 416.74 22.10
7 399.50 22.10
8 382.06 22.10
9 364.42 22.10
10 346.57 22.10
11 328.51 22.10
12 310.24 22.10

Year 2
13 291.76 22.10
14 273.06 22.10
15 254.15 22.10
16 235.02 22.10
17 215.66 22.10
18 196.08 22.10
19 176.27 22.10
20 156.23 22.10
21 135.95 22.10
22 115.44 22.10
23 94.69 22.10
24 73.69 22.10

Year 3
25 52.45 22.10
26 30.96 22.10
27 9.2222.10

Principal ^C
A>

Listing 16–2. Output from the LOAN1 Program

16.2 Ordinary Annuity
Listing 16-3 shows the ANNUITY program. Given the interest rate (i) and
two of three values, ANNUITY computes either the present value (PV),
the payment (PMT), or the number of pay periods (n) for an ordinary
annuity.

ANNUITY contains one main loop between lines 35 and 80 which reads the
present value, payment, and yearly interest from the console. On each
iteration, you enter two nonzero values and one zero value, then
ANNUITY computes the value of the variable that you enter as zero.
ANNUITY retains the values on each loop so that you can enter a comma
if you do not want to change the value. In this example, ANNUITY does
not check that the input values are in the proper range.

   1a
   2a /* This program computes either the present value(PV),
   3a /* the payment(PMT), or the number of periods in an
   4a /* ordinary annuity.
   5a
   6a annuity:
   7b procedure options(main);
   8b %replace
   9b clear by AZ,,
  10b true by 111b;
  11b declare



PL/I Programmer's Guide 16.2 Ordinary Annuity

16-4

  12b PMT fixed decimal(7,2),
  13b PV fixed decimal(9,2),
  14b IP fixed decimal(6,6),
  15b x float binary,
  16b yi float binary,
  17b i float binary,
  18b n fixed;
  19b
  20b declare
  21b ftc entry(float binary(24))
  22b returns(character(17) varying);
  23b
  24b put list (clear, A i^iO R D I N A R Y A N N U I T Y1)
  25b put skip(2) list
  26b ('^iEnter Known Values, or 0, on Each Iteration');
  27b
  28b on error
  29c begin;
  30c put skip list('^iInvalid Data, Re-enter');
  31c goto retry;
  32c end;
  33b
  34b retry:
  35c do while (true);
  36c put skip(3) list('^iPresent Value');
  37c get list(PV);
  38c put list('^iPayment');
  39c get list(PMT);
  40c put list('^iInterest Rate');
  41c get list(yi);
  42c i = yi / 1200;
  43c put list('^iPay Periods');
  44c get list(n);
  45c
  46c if PV 0 PMT = 0 then
  47c x = 1 – 1 / (1 + i) ** n;
  48c
  49c
  50c /* compute the present value
  51c
  52c if PV = 0 then
  53c do;
  54d PV = PMT * dec(ftc(x/i),15,6);
  55d put edit('^iPresent Value is ',PV)
  56d (a,p'$$$,$$$,$$$V.99');
  57d end;
  58c
  59c
  60c /* compute the payment
  61c
  62c if PMT = 0 then
  63d do;
  64d PMT = PV * dec(ftc(i/x),15,8);
  65d put edit(I^iPayment is ',PMT)
  66d (a,p'$$,$$$,$$$V.99');
  67d end;
  68c
  69c



PL/I Programmer's Guide 16.2 Ordinary Annuity

16-5

  70c /* compute number of periods
  71c
  72c if n = 0 then
  73d do;
  74d IP ftc(i);
  75d x = char(PV * IP / PMT);
  76d n = ceil ( - log(l-x)/log(l+i)
  77d put edit('-i',n,' Pay Periods')
  78d (a,p'ZZZ9',a);
  79d end;
  80c end;
  81b
  82b end annuity;

Listing 16–3. The ANNUITY Program

Listing 16-4 shows an interaction with the ANNUITY program in which
several different values are used as input.

A>annuity
O R D I N A R Y   A N N U I T Y

Enter Known Values, or 0, on Each Iteration

Present Value 32000
Payment 0
Interest Rate 8.75
Pay Periods 360
Payment is $251.74
Present Value ,
Payment 0
Interest Rate ,
Pay Periods 240
Payment is $282.78
Present Value 0
Payment
Interest Rate
Pay Periods
Present Value is $31,998.87

Present Value 32000
Payment
Interest Rate
Pay Periods 0

240 Pay Periods

Present Value ^C
A>

Listing 16–4. Interaction with the ANNUITY Program

16.2.1 Mixed Data Types
ANNUITY uses both FLOAT BINARY and FIXED DECIMAL data because it must
perform a mixture of decimal arithmetic calculations and analytic
function evaluations. The variables used throughout the program are
defined between lines 12 and 18 as follows:

•  PMT holds the payment value, is declared as FIXED DECIMAL (7,2) ,
and can be as large as $99,999.99.



PL/I Programmer's Guide 16.2 Ordinary Annuity

16-6

•  PV holds the present value, is declared as FIXED DECIMAL (9,2) and
can be as large as $99,999,999.99.

•  The variable IP holds the interest rate for a one month period, and
is declared as FIXED DECIMAL with six decimal places.

•  The variable n holds the number of payment periods, is declared as
FIXED BINARY, and can range from 1 to 32767.

•  The variables x, yi, and i are FLOAT BINARY numbers used during the
computations to approximate decimal numbers with 7 decimal places.

ANNUITY computes the unknown value using the equations shown below,
rather than the iteration. ANNUITY assumes the interest rate is greater
than zero.

First, the present value is given by:

1

1 n

+ i)

PV PMT

Transposing equation (1) gives:

i

PMT PV

1

1 n

(l + i) (2)

Finally, solving for n gives:

i
Log ( 1 - PV --- ) )

PMT

n (3)

Log + i )

The following expression appears in both equations (1) and (2):

1 - 1/(l + i) ** n

Therefore, ANNUITY stores this value in the variable x, line 47, and
uses it when evaluating PV and PMT. x is only an approximation of the
decimal value given by this expression.

16.2.2 Evaluating the Present Value PV
If you enter a zero value for PV, then ANNUITY executes the DO-group
between lines 53 and 57, and computes PV as:

PV = PMT * dec(ftc(x/i),15,6);

Line 20 declares ftc as an external subroutine. It is part of the PL/I
Run-time Subroutine Library (RSL), so ANNUITY only needs to declare it
as an entry constant to use it.



PL/I Programmer's Guide 16.2 Ordinary Annuity

16-7

The division x/i produces a FLOAT BINARY temporary result that ftc then
converts from FLOAT to CHARACTER form. For example, suppose that x/i
produces the value 3.042455E+01. Then ftc(x/i) returns 30.42455 which
is acceptable for conversion to decimal. If PL/I cannot convert the
floating-point argument to a 15-digit decimal number, ftc signals the
ERROR(l) condition indicating a conversion error.

Finally, the built-in DECIMAL function is applied to the character
string to convert it to a specific precision and scale factor (15,6).
When this is done, the multiplication and subsequent assignment to PMT
takes place.

How is this particular value for precision and scale factor decided? To
answer the question, first consider a restricted form of the same
program:

declare

PMT fixed decimal(7,2),

PV fixed decimal(9,2),

Q fixed decimal (u, v)

PV = PMT * Q;

where you must decide on the appropriate constant values for u and V.

PV has precision and scale factor (9,2) , and thus there must be seven
digits in the whole part and two digits in the fraction. PL/I generates
the full seven digits in the whole part if the product PMT Q results in
any of the precision and scale factor values:

(9,2) (10,3) (11,4) (12,5) (13,6) (14,7) (15,8)

The assignment to PV truncates any fractional digits beyond the second
decimal place. Because PMT has precision and scale factor (7,2) , you
can choose Q with a precision and scale factor of (15,6). Then the
multiplication produces a result with precision and scale factor,

(min(15,7+15+1),2+6) = (15,8)

according to the rules stated previously.

Given an expression with precision and scale factor values as shown
below,

a b c

(p1,q1) (p2, q2) (p3, q3)

where p1, q1, p2, and q2 are constants, you can set the precision and
scale factor of c to:

p3 = 15 q3 = 15 - (p + q - s)

Thus, using the values shown in the original program, the precision and
scale factor of Q becomes

q3 = 15 - (9 + 2 - 2) = 8, or (p3,q3) = (15,6)

16.2.3 Evaluating the Payment PHT
If you enter a nonzero present value for PV and a zero value for the
payment PMT, then ANNUITY enters the DO-group beginning at line 63 and
computes the value of PMT as:



PL/I Programmer's Guide 16.2 Ordinary Annuity

16-8

PMT = PV * dec (ftc(i/x),15,8);

The computation uses essentially the same technique as shown in the
previous example. You must decide the precision and scale factor of the
second operand in the multiplication. You are really concerned only
with the value of the scale factor because the precision can be taken
as 15. Using the preceding analysis, evaluate the form:

a b c

(7,2) (9,2) (15,q3)

and determine the value for q3:

q3 = 15 - (pl + ql - q2) = 15 -(7 + 2 - 2) = 8

16.2.4 Evaluating the Number of Periods n
When you enter nonzero values for PV and PMT, but set the number of
periods to zero, ANNUITY executes the DO-group beginning on line 73 to
compute n. The assignment on line 74 first changes the interest for a
monthly period from FLOAT BINARY to FIXED DECIMAL. Next, the assignment
on line 75:

x = char(PV * IP / PMT);

first computes the partial decimal result PV * IP / PMT, then converts
the result to CHARACTER, and then to FLOAT BINARY through the
assignment to x.

The multiplication PV * IP produces a temporary result with the
precision and scale factor:

PV IP

(9,2) (7,2)

1 1 1

(15,4)

The temporary result is now divided by PMT and results in another
temporary result with the following precision and scale factor:

PV * IP PMT

(15,4) (7,2)

1 1 1

(15,2)

because, according to the rules for division:

(15,15-pl+ql-q2) = (15,15-15+4-2) = (15,2)

thus providing two decimal places in the computation.

The intermediate conversion to CHARACTER form is necessary because
otherwise PL/I would first convert the intermediate result to FIXED
BINARY, and then to FLOAT BINARY, resulting in truncation of the
fraction. This sequence of conversions is necessary to maintain
compatibility with the full language.

If required, you could generate additional fractional digits by
applying the DECIMAL built-in function following the multiplication:

x = char( dec( PV*P, 11,4 ) / PMT);



PL/I Programmer's Guide 16.3 Loan Payment Schedule Format

16-9

and produce a quotient with precision and scale factor:

(15,15-11+4-2) = (15,6)

ANNUITY uses the value x in the expression on line 76 to compute the
number of payment periods, and applies the CEIL function to the result
so that any partial month is treated as a full month in the payment
period analysis.

Finally, ANNUITY uses the picture edit format to write out the values
of PV, PMT, and n.

16.3 Loan Payment Schedule Format
The LOAN2 program shown in Listing 16-5 is essentially the same as that
presented in Section 16.1, but it has a more elaborate analysis and
display format. LOAN2 uses an algorithm similar to that described in
Section 16.1. The main processing occurs between lines 101 and 136,
where the program increases the initial principal by the monthly
interest, and reduces it by the monthly payment until the principal
becomes zero.

The four listings that follow the discussion of the program show
several examples of interaction with LOAN2.

Listing 16-6 shows a minimal display corresponding to a loan of $3000
at a 14% interest rate with a payment of $144.03. Assume an inflation
rate of 0% with a starting payment on 11/80, and end-of year taxes due
in December.

The display shows the principal, interest in December, monthly payment,
amount paid toward principal in December, and amount of interest paid
in the last month of the fiscal year.

Listing 16-7 shows another execution using the same values as the first
time, but using a display level of 1. The output also contains the
yearly interest paid on the loan for each fiscal year that would be
deducted from the taxable income.

Listing 16-8 uses the same initial values of the previous examples, but
provides a full display of the monthly principal, interest, monthly
payment, payment applied to the principal, and interest payment.

Listing 16-9 also shows the same loan and interest rate with an
adjustment in dollar value due to inflation. This example assumes the
inflation rate of 10%, so that all amounts are scaled to the value of
the dollar at the time the loan is issued.

For tax reporting purposes, the display showing the total interest paid
at the end of each year is not scaled, and thus does not match the sum
of the interest paid during the year. If we assume a 0% inflation rate,
the total loan payment is 3,456.97, taken from the previous output.

But if we assume an inflation rate of 10%, the total cost of the loan
in dollars today is

2,457.00

+ 374.25

2,831.25



PL/I Programmer's Guide 16.3 Loan Payment Schedule Format

16-10

resulting in a net gain of 68.75 over a two year period!

   1a
   2a /* This program computes a schedule of loan payments
   3a /* using an elaborate analysis and display format.
   4a /* It contains five internal procedures: DISPLAY,
   5a /* SUMMARY, CURRENT YEAR, HEADER, and LINE.
   6a
   7a loan2:
   8b procedure options(main);
   9b %replace
  10b trueby '1'b,
  11b false by 'O'b,
  12b clear by '^z';
  13b
  14b declare
  15b end bit(l),
  16b m fixed binary,
  17b sm fixed binary,
  18b y fixed binary,
  19b sy fixed binary,
  20b fm fixed binary,
  21b dl fixed binary,
  22b P fixed decimal(10,2),
  23b PV fixed decimal(10,2),
  24b PP fixed decimal(10,2),
  25b PL fixed decimal(10,2),
  26b PMT fixed decimal(10,2),
  27b PMV fixed decimal(10,2),
  28b INT fixed decimal(10,2),
  29b YIN fixed decimal(10,2),
  30b IP fixed decimal(10,2),
  31b yi fixed decimal(4,2),
  32b i fixed decimal(4,2),
  33b INF fixed decimal(4,3),
  34b ci fixed decimal(15,14),
  35b fi fixed decimal(7,5),
  36b ir fixed decimal(4,2);
  37b
  38b declare
  39b name character(14) varying static initial('$con'),
  40b output file;
  41b
42 b put list(clear,'^i^iS U M M A R Y 0 F P A Y M E N T S');
  43b
  44b on undefinedfile(output)
  45c begin;
  46c put skip list('^i^icannot write to',name);
  47c goto open_output;
  48c end;
  49b
  50b open_output:
  51b put skip(2) list('^i^iOutput File Name
  52b get list(name);
  53b if name = '$con' then
  54b open file(output) title('$con') print pagesize(O);
  55b else
  56b open file(output) title(name) print;
  57b



PL/I Programmer's Guide 16.3 Loan Payment Schedule Format

16-11

  58b on error
  59c F begin;
  60c put skip list('^i^iBad Input Data, Retry');
  61c goto retry;
  62c end;
  63b
  64b retry:
  65c do while(true);
  66c put skip(2) list('^i^iPrincipal
  67c get list(PV);
  68c P = PV;
  69c put list('^i^iInterest
  70c get list(yi);
  71c i = yi;
  72c put list('^i^iPayment
  73c get list(PMV);
  74c PMT = PMV;
  75c put list('^i^i%Inflation
  76c get list(ir);
  77c fi = I + ir/1200;
  78c ci = 1.00;
  79c put list('^i^iStarting Month
  80c get list(sm);
  81c put list('^i^iStarting Year
  82c get list(sy);
  83c put list('^i^iFiscal Month
  84c get list(fm);
  85c put edit('^i^iDisplay Level
  86c '^i^iYr Results : 0
  87c '^i^iYr Interest: 1
  88c '^i^iAll Values : 2
  89c (skip,a);
  90c get list(dl);
  91c if dl < 0 | dl > 2 then
  92c signal error;
  93c m = sm;
  94c y = sy;
  95c IP = 0;
  96c PP = 0;
  97c YIN = 0;
  98c if name then
  99c put file(output) page;
 100c call header();
 101d do while (P > 0);
 102d end = false;
 103d INT = round ( i * P / 1200, 2
 104d IP = IP + INT;
 105d PL = P;
 106d P = P + INT;
 107d if P < PMT then
 108d PMT P;
 109d P = P PMT;
 110d PP = PP + (PL - P);
 111d INF = ci;
 112d ci = ci fi;
 113d if P = 0 | dl > 1 | m fm then
 114e do;
 115e put file(output) skip



PL/I Programmer's Guide 16.3 Loan Payment Schedule Format

16-12

 116e edit('11,100*m+y) (a,p'99/99');
 117e call display(PL * INF, INT * INF,
 118e PMT * INF, PP * INF, IP INF);
 119e end;
 120d if m = fm & dl > 0 then
 121d call summary()
 122d m m + 1;
 123d if m > 12 then
 124e do;
 125e m = 1;
 126e y = y + 1;
 127e if y > 99 then
 128e y = 0;
 129e end;
 130d end;
 131c if dl = 0 then
 132c call line();
 133c else
 134c if ^end then
 135c call summary();
 136c end retry;
 137b
 138b /* This procedure performs the output of the actual
 139b /* parameters passed to it by the main part of the
 140b /* program.
 141b
 142b display:
 143c procedure(a,b,c,d,e);
 144c declare
 145c (a,b,c,d,e) fixed decimal(10,2);
 146c
 147c put file (output) edit
 148c ('11 , a,'j',b,'j',c,'j',d,'1'1e,'j1)
 149c (a,2(2(p1$zz,zzz,zz9v.99',a),
 150c pl$zzz,zz9.v991,a));
 151c end display;
 152b
 153b
 154b /* This procedure computes the summary of yearly
 155b /* interest.
 156b
 157b summary:
 158c procedure;
 159c end = true;
 160c call current_year(IP-YIN);
 161c YIN = IP;
 162c end summary;
 163b
 164b
 165b /* This procedure computes the interest paid during
 166b /* current year.
 167b
 168b current_year:
 169c procedure(I);
 170c declare
 171c yp fixed binary,
 172c I fixed decimal(10,2);
 173c yp ~ y;



PL/I Programmer's Guide 16.3 Loan Payment Schedule Format

16-13

 174c if fm < 12 then
 175c yp = yp - 1;
 176c call line();
 177c put skip file(output) edit
 178c ('I','Interest Paid During -',yp,'-111,y,1 is
 179c (a,x(15),2(a,p'99'),a,p'$$$,$$$,$$9v.991,x(16),a);
 180c call line();
 181c end current-year;
 182 b
 183b
 184b /* This procedure defines and prints out an elaborate
 185b /* header format.
 186b
 187b header:
 188c procedure;
 189c put file(output) list(clear);
 190c call line();
 191c put file(output) skip edit
 192c (111,1L 0 A N P A Y M E N T S U M M A R Y','J')
 193c (a,x(19));
 194c call line();
 195c put file(output) skip edit
 196c ('I','Interest Rate',yi,'%','Inflation RateI,ir,'%','I')
 197c (a,x(15),2(a,p'b99v.99',a,x(6)),x(9),a);
 198c call line();
 199c put file(output) skip edit
 200c ('IDate 1','Principal 1','Plus Interest1',' Payment 1',
 201c 'Principal Paidy','Interest Paid I') (a);
 202c call line();
 203c end header;
 204b
 205b
 206b /* This procedure prints out a series of dashed lines.
 207b
 208b line:
 209c procedure;
 210c declare
 211c i fixed bin;
 212c put file(output) skip edit
 213c ------- I', -----------
 214c ---------------- do i 1 to 4)) (a);
 215c end line;
 216b
 217b
 218b end loan2;

Listing 16–5. The LOAN2 Program

16.3.1 Variable Declarations
Starting on line 14, LOAN2 declares several data items:

•  PV present value, initial principal

•  yi yearly interest rate

•  PMV monthly payment

•  ir yearly inflation rate



PL/I Programmer's Guide 16.4Computation of Depreciation Schedules

16-14

•  sm starting month of payment (1-12)

•  sy starting year of payment (0-99)

•  fm fiscal month, end of fiscal year (1-12)

•  dl display level (0-2)

16.3.2 Program Execution
Missing pages 16-19 through 16-20

16.3.3 Display Formats
Missing pages 16-20 through 16-26

Listing 16–6. First Interaction with LOAN2

Listing 16–7. Second Interaction with LOAN2

Listing 16–8. Third Interaction with LOAN2

Listing 16–9. Fourth Interaction with LOAN2

16.4 Computation of Depreciation Schedules
Missing pages 16-26 through 16-26

16.4.1 General Algorithms
Missing pages 16-26 through 16-34

16.4.2 Selecting the Schedule
Missing pages 16-34 through 16-34

Listing 16–10. The DEPREC Program



PL/I Programmer's Guide 16.4Computation of Depreciation Schedules

16-15

is equivalent to:

call schedule (index(syd,select-sched));

and for the valid inputs s, y, or d, produces 1, 2, or 3 respectively.

Thus, if select-sched is s, the call statement evaluates to:

call schedule(1);

which calls the subroutine straight_line. Similarly, an input of y or d
evaluates to:

call schedule(2); or call schedule(3);

producing a call to sum_of_years or double-declining respectively

If the value of select sched is not s, y, or d, then the INDEX function
returns a zero value. All invalid character input values produce the
following:

call schedule(0);

which calls the error subroutine and prints the error message.

16.4.3 Displaying the Output
Another construct of DEPREC is the output file variable, defined on
line 39. During the parameter input phase, DEPREC prompts you with:

List? (yes/no)

A yes response sends the output from the program to both the console
and the list device.

Line 40 declares two file constants, sysprint and list, to address the
console and the list device. DEPREC first opens the console file, line
51, using an infinite page length to avoid form feed characters.

On any iteration of the main DO-group, if you give an affirmative
response on line 77, DEPREC subsequently opens the list device, line
78. This statement can be executed several times during a particular
execution of the program, but only the first OPEN statement has any
effect; PL/I ignores the OPEN statement if the file is already open.

Line 91 calls the display subroutine to compute and display the output
report for a specific set of input values. Display has a single actual
parameter consisting of the file constant sysprint that is defined as
the formal parameter f on line 104. Line 107 assigns the formal
parameter to the global variable output. Subsequent PUT statements
write data to the console, producing the first report.

on line 92, if the variable copy_to_list has the character value yes,
then DEPREC calls display once again. This time, the actual parameter
is list, corresponding to the system list device. Thus, the output file
variable is indirectly assigned the value list, and all PUT statements
that reference file output send data to the printer. This results in
both a soft and hard copy of the report.

DEPREC uses several different forms of decimal arithmetic. Examine the
various declarations while cross-checking the output formats with the
displayed results.

A>deprec



PL/I Programmer's Guide 16.4Computation of Depreciation Schedules

16-16

Depreciation Schedule

Selling Price? 200000
Residual Value? 40000
Sales Tax (%)?6
Tax Bracket(%)? 50
ProRate Months? 10
How Many Years? 7
New? (yes/no) no
Schedule:
Straight (s)
Sum-of-Yrs (y)
Double Dec (d)?d
List? (yes/no) no

D 0 U B L E D E C L I N I N G
--------------------------------------------------

$212,000.00 Used $40,000.00 Residual Value
10 Months Left 06% Tax 50% Tax Bracketl

------------------------------------------------
Y I Depreciation ~ Depreciation Book Value
r For Year Remaining I I
--------------------------------------------------
1 $ 35,357.14 $ 122,642.86 $ 162,642.86
2 $ 34,852.04 $ 87,790.82 $ 127,790.82
3 $ 27,383.75 $ 60,407.07 $ 100,407.07
4 $ 21,515.79 $ 38,891.28 $ 78,891.28
5 $ 16,905.27 $ 21,986.01 $ 61,986.01
6 $ 13,282.71 $ 8,703.30 $ 48,703.30
7 $ 8,703.30 $ 0.00$ 40,000.00
--------------------------------------------------

First Year Reduction in Taxable Income I
-------------------------------------------------
Depreciation $ 35,357.14
Sales Tax $ 12,000.00
ITC (Adjusted) $ 20,000.00
Bonus Depreciation $ 2,000.00

------------
Total for First Year $ 69,357.14
Direct Reduction in Tax $ 34,678.57
--------------------------------------------------

Listing 16–11. First Interaction with DEPREC

Depreciation Schedule

Selling Price?
Residual Value?
Sales Tax (%)?
Tax Bracket(%)?
ProRate Months?
How Many Years?
New? (yes/no) ~es
Schedule:
Straight (s)
Sum-of-Yrs (y)
Double Dec (d)?y
List? (yes/no) no



PL/I Programmer's Guide 16.4Computation of Depreciation Schedules

16-17

S U M 0 F T H E Y E A R S
--------------------------------------------------
$212,000.00 New $40,000.00 Residual Value I

8 Months Left 06% Tax 50% Tax Bracketl
-------------------------------------------------
Y I Depreciation I Depreciation Book Value
r For Year Remaining I I
--------------------------------------------
1 $ 26,333.33 $ 131,666.67 $ 171,666.67
2 $ 28,214.29 $ 103,452.38 $ 143,452.38
3 $ 18,473.64 $ 84,978.74 $ 124,978.74
4 $ 12,139.82 $ 72,838.92 $ 112,838.92
5 $ 7,804.17 $ 65,034.75 $ 105,034.75
6 $ 4,645.34 $ 60,389.41 $ 100,389.41
1 7 J$ 2,156.76 $ 58,232.65 $ 98,232.65
--------------------------------------------------

First Year Reduction in Taxable Income I
-------------------------------------------------
Depreciation $ 26,333.33
Sales Tax $ 12,000.00
ITC (Adjusted) $ 40,000.00
Bonus Depreciation $ 2,000.00

------------
Total for First Year $ 80,333.33
Direct Reduction in Tax $ 40,166.66
--------------------------------------------------

Listing 16–12. Second Interaction with DEPREC

Depreciation Schedule

Selling Price? 310000
Residual Value? 30000
Sales Tax (%)?
Tax Bracket(%)?
ProRate Months? 12
How Many Years? 5
New? (yes/no) yes
Schedule:
Straight (s)
Sum-of-Yrs (y)
Double Dec (d)?d
List? (yes/no) no

D 0 U B L E D E C L I N I N G
--------------------------------------------------
$328,600.00 New        $30,000.00 Residual Value |
12 Months Left      06% Tax      50% Tax Bracket |
--------------------------------------------------
Y I Depreciation I Depreciation Book Value
r For Year Remaining I I
----------------------------------------------
1 $ 123,200.00 $ 154,800.00 $ 184,800.00
2 $ 73,920.00 $ 80,880.00 $ 110,880.00
3 $ 44,352.00 $ 36,528.00 $ 66,528.00
4 $ 26,611.20 $ 9,916.80 $ 39,916.80
5 $ 9,916.80 $ 0.00$ 30rOOO.OO
------------------------------------------------ -

First Year Reduction in Taxable Income I



PL/I Programmer's Guide 16.4Computation of Depreciation Schedules

16-18

------------------------------------------------
Depreciation $ 123,200.00
Sales Tax $ 18,600.00
ITC (Adjusted) $ 62,000.00
Bonus Depreciation $ 2,000.00

------------
Total for First Year $ 205,800.00
Direct Reduction in Tax $ 102,900.00
--------------------------------------------------

Listing 16–13. Third Interaction with DEPREC

Depreciation Schedule

Selling Price?
Residual Value?
Sales Tax (%)?
Tax Bracket(%)?
ProRate Months?
How Many Years?
New? (yes/no)
Schedule:
Straight (s)
Sum-of-Yrs (y)
Double Dec (d)?s
List? (yes/no) r

S T R A I G H T L I N E
--------------------------------------------------
$328,600.00 New $30,000.00 Residual Value
1 12 Months Left 06% Tax 50% Tax Bracketi

Y I Depreciation I Depreciation Book Value
r For Year Remaining I I
--- ------------ ---------------------------
1 $ 55,600.00 $ 222,400.00 $ 252,400.00
2 $ 44,480.00 $ 177,920.00 $ 207,920.00
3 $ 35,584.00 $ 142,336.00 $ 172,336.00
4 $ 28,467.20 $ 113,868.80 $ 143,868.80
5 $ 22,773.76 $ 91,095.04 $ 121,095.04
--- -------------- -------------------------------
First Year Reduction in Taxable Income I
-------------------------------------------------
Depreciation $ 55,600.00
Sales Tax $ 18,600.00
ITC (Adjusted) $ 62,000.00
Bonus Depreciation $ 2,000.00

------------
Total for First Year $ 138,200.00
Direct Reduction in Tax $ 69,100.00
--------------------------------------------------

Listing 16–14. Fourth Interaction with DEPREC

References: Sections 3.1, 3.5, 4.2, 11.3 LRM

End of Section 16



Section 17

17-1

17 Dynamic Storage and Stack Routines
This section describes some functions in the PL/I Run-time Subroutine
Library (RSL) that perform dynamic memory management and manipulate the
stack size.

17.1 Dynamic Storage Subroutines
The RSL includes a number of functions that provide access to the
dynamic storage routines. These routines maintain a linked list of all
unallocated storage. Upon request, these routines search for the first
available segment in the free list that satisfies the request size,
remove the requested segment, and return the remaining portion to the
free list. If the storage is not available, the run time system signals
ERROR(7), Free Space Exhausted.

PL/I dynamically allocates storage upon entry to RECURSIVE procedures,
when processing explicit or implicit OPEN statements for files
performing disk I/O, or when processing an ALLOCATE statement. PL/I
always allocates an even number of bytes or whole words, no matter what
the request size.

17.1.1 The TOTWDS and MAXWDS Functions
It is often useful to find the amount of storage available at any given
point while the program is running. The TOTWDS (Total Words) and MAXWDS
(Max Words) functions provide this information.

You must declare the functions in the calling program as:

declare totwds entry returns(fixed(15));

declare maxwds entry returns(fixed(15));

When you invoke the TOTWDS subroutine, it scans the free storage list
and returns the total number of words (double bytes) available. The
MAXWDS subroutine returns the size (in words) of the largest contiguous
segment in the free list. A subsequent ALLOCATE statement that
specifies a segment size less than or equal to MAXWDS does not signal
ERROR(7) , because at least that much storage is available.

Both TOTWDS and MAXWDS count in word units, so the returned values can
be held by FIXED BINARY(15) counters. Both TOTWDS and MAXWDS return the
value -1 if they encounter invalid link words while scanning the free
space list. This return is usually due to an out of-bounds subscript or
pointer store operation. Otherwise, these functions return a
nonnegative integer value.

17.1.2 The ALLWDS Subroutine
The PL/I Run-time Subroutine Library contains a subroutine, called
ALLWDS, that you use to control the dynamic allocation size. You must
declare the subroutine in the calling program as:

declare allwds entry(fixed(15)) returns(pointer);

The ALLWDS subroutine allocates a memory segment in words equal to the
size given by the input parameter, and returns a pointer to the
allocated segment. If no segment is available, ALLWDS signals the
ERROR(7) condition. The input value must be a nonnegative integer.



PL/I Programmer's Guide 17.1 Dynamic Storage Subroutines

17-2

Listing 17-1 shows the ALLTST program which is an example of how to use
the TOTWDS, MAXWDS, and ALLWDS functions. Listing 17-2 shows a sample
interaction with the ALLTST program.

   1a
   2a /* This program tests the TOTWDS, MAXWDS, and ALLWDS
   3a /* functions from the Run-time Subroutine Library.
   4a
   5a alltst:
   6b procedure options(main);
   7b declare
   8b totwds entry returns(fixed(15)),
   9b maxwds entry returns(fixed(15)),
  10b allwds entry(fixed(15)) returns(pointer);
  11b
  12b declare
  13b allreq fixed(15),
  14b memptr ptr,
  15b meminx fixed(15),
  16b memory (0:0) bit(16) based(memptr);
  17b
  18c do while('1'b);
  19c put edit (totwds(),' Total Words Available',
  20c maxwds(),' Maximum Segment Size',
  21c 'Allocation Size? ') (2(skip,f(6),a),skip,a);
  22c get list(allreq);
  23c memptr = allwds(allreq);
  24c put edit('Allocated',allreq,' Words at ',unspec(memptr))
  25c (skip,a,f(6),a,b4);
  26c
  27c /* clear memory as example
  28d do meminx = 0 to allreq-1;
  29d memory(meminx) = '0000'b4;
  30d end;
  31c end;
  32b
  33b end alltst;

Listing 17–1. The ALLTST Program

A>alltst

24470 Total Words Available
24470 Maximum Segment Size

Allocation Size? 0

Allocated 0 Words at 28D6
24468 Total Words Available
24468 Maximum Segment Size

Allocation Size? 100

Allocated 100 Words at 28DA
24366 Total Words Available
24366 Maximum Segment Size

Allocation Size? 500

Allocated 500 Words at 29A6
23864 Total Words Available
23864 Maximum Segment Size



PL/I Programmer's Guide 17.2 The STKSIZ Function

17-3

Allocation Size? 23865

ERROR (7), Free Space Exhausted
Traceback; 016D
A>

Listing 17–2. Interaction with the ALLTST Program

17.2 The STKSIZ Function
In PL/I, the program stack is placed above the code and data area, and
below the dynamic storage area (TPA). The default size of the program
stack is 512 bytes, but can be changed using the STACK(n) option in the
main procedure heading.

The STKSIZ (Stack Size) function returns the current stack size in
bytes. This function is particularly useful for checking possible stack
overflow conditions, or in determining the maximum stack depth during
program testing.

You must declare the STKSIZ function in the calling program as:

declare stksiz returns(fixed(15));

Listing 17-3 shows an example of the STKSIZ function in the program
called ACKTST, where it checks the maximum stack depth during RECURSIVE
procedure processing. Listing 17-4 shows an interaction with this
program.

   1 a
   2 a /* This program tests the STKSIZ function while
   3 a /* evaluating a RECURSIVE procedure.
   4a
   5a ack:
   6b procedure options(main,stack(2000));
   7b declare
   8b (m,n) fixed,
   9b (maxm,maxn) fixed,
  10b ncalls decimal(6),
  11b (curstack, stacksize) fixed,
  12b stksiz entry returns(fixed);
  13b
  14b put skip list('Type max m,n:
  15b get list(maxm,maxn);
  16c do m = 0 to maxm;
  17d do n = 0 to maxn;
  18d ncalls = 0;
  19d curstack = 0;
  20d stacksize = 0;
  21d put edit('Ack(l,m,',',n,')=',ackermann(m,n),
  22d ncalls,' Calls,',stacksize,' Stack Bytes')
  23d (skip,a,2(f(2),a),f(6),f(7),a,f(4),a);
  24d end;
  25c end;
  26b stop;
  27b
  28b ackermann:
  29c procedure(m,n) returns(fixed) recursive;
  30c
  31c declare



PL/I Programmer's Guide 17.2 The STKSIZ Function

17-4

  32c (m,n) fixed;
  33c ncalls = ncalls + 1;
  34c curstack = stksizo;
  35c if curstack > stacksize then
  36c stacksize = curstack;
  37c if m = 0 then
  38c return(n+l);
  39c if n = 0 then
  40c return(ackermann(m-1,1));
  41c return(ackermann(m-l,ackermann(m,n-1)));
  42c end ackermann;
  43b
  44b end ack;

Listing 17–3. The ACKTST Progran

A>acktst

Type max m,n: 6,6

Ack( 0, 0) = 1 1 Calls, 4 Stack Bytes
Ack( 0, 1) = 2 1 Calls, 4 Stack Bytes
Ack( 0, 2) = 3 1 Calls, 4 Stack Bytes
Ack( 0, 3) = 4 1 Calls, 4 Stack Bytes
Ack( 0, 4) = 5 1 Calls, 4 Stack Bytes
Ack( 0, 5) = 6 1 Calls, 4 Stack Bytes
Ack( 0, 6) = 7 1 Calls, 4 Stack Bytes
Ack( 1, 0) = 2 2 Calls, 6 Stack Bytes
Ack( 1, 1) = 3 4 Calls, 8 Stack Bytes
Ack( 1, 2) = 4 6 Calls, 10 Stack Bytes
Ack( 1, 3) = 5 8 Calls, 12 Stack Bytes
Ack( 1, 4) = 6 10 Calls, 14 Stack Bytes
Ack( 1, 5) = 7 12 Calls, 16 Stack Bytes
Ack( 1, 6) = 8 14 Calls, 18 Stack Bytes
Ack( 2, 0) = 3 5 Calls, 10 Stack Bytes
Ack( 2, 1) = 5 14 Calls, 14 Stack Bytes
Ack( 2, 2) = 7 27 Calls, 18 Stack Bytes
Ack( 2, 3) = 9 44 Calls, 22 Stack Bytes
Ack( 2, 4) = 11 65 Calls, 26 Stack Bytes
Ack( 2, 5) = 13 90 Calls, 30 Stack Bytes
Ack( 2, 6) = 15 119 Calls, 34 Stack Bytes
Ack( 3, 0) = 5 15 Calls, 16 Stack Bytes
Ack( 3, 1) = 13 106 Calls, 32 Stack Bytes
Ack( 3, 2) = 29 541 Calls, 64 Stack Bytes
Ack( 3, 3) = 61 2432 Calls, 128 Stack Bytes
Ack( 3, 4) = 125 10307 Calls, 256 Stack Bytes
Ack( 3, 5) =

Listing 17–4. Output From the ACKTST Program

End of Section 17



Section 18

18-1

18 Overlays
This section describes how to use the linkage editor to create PL/I
overlays. Overlays are programs comprised of separate files. The
advantage of overlays is that they share the same memory locations, so
you can write large programs that run in a limited memory environment.

18.1 Using Overlays in PL/I
In both the 8-bit and 16-bit implementations, the size of the Transient
Program Area (TPA) determines the upper limit on the size of a program.
However, there is another constraint in the 16-bit implementations.
Although there can be enough memory space available on the system, the
compiler generates code that assumes the small memory model. The small
model means that when you link one or more OBJ files with the Run-time
Subroutine Library (RSL), the size of the code and data sections in the
CMD or EXE are each limited to 64K. Thus, the compiler determines the
upper limit on the size of any program, but the size limit is not
encountered until link time.

With modular design, you can write a large program that does not need
to reside in memory all at once. For example, many application programs
are menu-driven, in which the user selects one of a number of functions
to perform. Because the functions are separate and invoked
sequentially, they do not need to reside in memory simultaneously. When
one of the functions is complete, control returns to the menu portion
of the program, from which the user selects the next function. Using
overlays, you can divide such a program into separate subprograms that
can be stored on disk and loaded only when required.

The following figure illustrates the concept of overlays. Suppose a
menu-driven application program consists of three separate user
selected functions. If each function requires 30K of memory, and the
menu portion requires 10K, then the total memory required for the
program is 100K, as shown in Figure 18-1a. However, if the three
functions are designed as overlays, as shown in Figure 18-lb, the
program requires only 40K, because all three functions share the same
memory locations.

Figure 18–1. Using Overlays in a Large Program



PL/I Programmer's Guide 18.2 Writing Overlays in PL/I

18-2

You can also create nested overlays in the form of a tree structure,
where each overlay can call other overlays up to a maximum nesting
level that the overlay manager determines. Section 18.3 describes the
command line syntax for creating nested overlays.

Figure 18-2 illustrates the tree structure of overlays. The top of the
highest overlay determines the total amount of memory required. In
Figure 18-2, the highest overlay is SUB4. This is substantially less
memory than would be required if all the functions and subfunctions had
to reside in memory simultaneously.

Figure 18–2. Tree Structure of Overlays

18.2 Writing Overlays in PL/I
There are two ways to write PL/I programs that use overlays. The first
method involves no special coding, but has two restrictions. The first
restriction is all that overlays must be on the default drive; the
second is that the overlay names must be determined at translation time
and cannot be changed at run-time.

The second method requires a more involved calling sequence, but does
not have either of the restrictions of the first method.

18.2.1 Overlay Method One
To use the first method, you declare an overlay as an entry constant in
the module where it is referenced. As an entry constant, the overlay
can have parameters declared in a parameter list. The overlay itself is
simply a PL/I procedure or group of procedures.

For example, the following program is a root module with one overlay:

root:
procedure options(main);
declare

ovlay1 entry(character(15));
put skip list('root');
call ovlay1('overlay 1');

end root;

The overlay OVLAY1.PLI is defined as follows:

ovlay1:
procedure(c);
declare

c character(15);



PL/I Programmer's Guide 18.2 Writing Overlays in PL/I

18-3

put skip list(c);
end ovlay1;

Note: When passing parameters to an overlay, you must ensure that the
number and type of the parameters are the same in both the calling
program and the overlay.

When the program runs, ROOT first displays the message 'root' at the
console. The CALL statement then transfers control to the overlay
manager . The overlay manager loads the file OVLAY1 from the default
drive and transfers control to it.

When the overlay receives control, it displays the message 'overlay 1'
at the console. OVLAY1 then returns control directly to the statement
following the CALL statement in ROOT. The program then continues from
that point.

If the requested overlay is already in memory, the overlay manager does
not reload it before transferring control.

The following constraints apply to overlay method one:

•  The label in the call statement is the actual name of the overlay
file loaded by the overlay manager; consequently, the two names must
agree.

•  The name of the entry point to an overlay need not agree with the
name used in the calling sequence, but using the same name avoids
confusion.

•  The overlay manager only loads overlays from the drive that was the
default when the root module began execution. The overlay manager
disregards any changes in the default drive that occur after the
root module begins execution.

•  The names of the overlays are fixed. To change the names of the
overlays, you must edit, recompile, and relink the program.

•  No nonstandard PL/I statements are needed. Thus, you can postpone
the decision on whether or not to create overlays until link time.

18.2.2 Overlay Method Two
In some applications, you might want to have greater flexibility with
overlays, such as loading overlays from different drives, or
determining the name of an overlay from the console or a disk file at
run-time.

To do this, a PL/I program must declare an explicit entry point into
the overlay manager, as follows:

declare ?ovlay entry(character(10),fixed(l));

This entry point requires two parameters. The first is a 10 character
string that specifies the name of the overlay to load, and an optional
drive code in the standard format (d:filename).

The second parameter is the load flag. If the load flag is 1, the
overlay manager loads the specified overlay whether or not it is
already in memory. If the load flag is 0, the overlay manager loads the
overlay only if it is not already in memory.



PL/I Programmer's Guide 18.2 Writing Overlays in PL/I

18-4

Using this method, the example illustrating method one appears as
follows:

root:
procedure options(main);
declare

?ovlay entry(character(10),fixed(l)),
dummy entry(character(15)),
name character(10);

put skip list('root');
name = 'OV1';
call ?ovlay(name,0);
call dummy('overlay 1');

end root;

The file OV1.PLI is the same as the previous example.

At run-time, the statement:

call ?ovlay(name,0);

directs the overlay manager to load OV1 from the default drive (1 is
the current value of the variable name); control then transfers to OV1.
When OV1 finishes processing, control returns to the statement
following the invocation.

In this example, the variable name is assigned the value 'OV1'.
However, you could also supply the overlay name as a character string
from some other source, such as the console keyboard.

The following constraints apply to overlay method two:

•  You can specify a drive code so the overlay manager can load
overlays from drives other than the default drive. If you do not
specify a drive code, the overlay manager uses the default drive as
described in method one.

•  If you pass any parameters to the overlay, they must agree in number
and type with the parameters that the overlay expects

18.2.3 General Overlay Constraints
The following general constraints apply when creating overlays in a
PL/I program:

•  Each overlay has only one entry point. The overlay manager in the
PL/I Run-time Subroutine Library assumes that this entry point is at
the load address of the overlay.

•  You cannot make an upward reference from a module to entry points in
overlays higher on-the tree. The only exception is a reference to
the main entry point of the overlay. You can make downward
references to entry points in overlays lower on the tree or in the
root module.

•  Common segments (EXTERNALS in PL/I) that are declared in one module
cannot be initialized by a module higher in the tree. The linkage
editor ignores any attempt to do so.

•  You can nest overlays to a depth of 5 levels.



PL/I Programmer's Guide 18.3 Command Line Syntax

18-5

•  The overlay manager uses the default buffer located at 80H, so user
programs should not depend on data stored in this buffer. Note that
in the 8086 implementations, the default buffer is at 80H relative
to the base of the data segment.

18.3 Command Line Syntax
To specify overlays in the command line of the linkage editor, enclose
each overlay specification in parentheses. You can create overlays with
LINK-80™ in one of the following forms:

link root(ovl)

link root(ovl,part2,part3)

link root(ovl=partl,part2,part3)

The first form produces the file OV1. OVL from the file OV1. REL. The
second form produces the file OVl.OVL from OV1.REL, PART2.REL, and
PART3. REL. The third form produces the file OV1. OVL from PART1. REL,
PART2.REL, and PART3.REL.

Create overlays with LINK-86™ using the same forms:

link86 root(ovl)

link86 root(ovl,part2,part3)

link86 root(ovl=partl,part2,part3)

The first form produces the file OVl.OVR from the file OV1.OBJ. The
second form produces the file OVl.OVR from OV1.OBJ, PART2.OBJ, and
PART3.OBJ. The third form produces the file OVl.OVR from PART1.OBJ,
PART2.OBJ, and PART3.OBJ.

In the command line, a left parenthesis indicates the start of a new
overlay specification, and also indicates the end of the group
preceding it. All files to be included at any point on the tree must
appear together, without any intervening overlay specifications. You
can use spaces to improve readability, but do not use commas to set off
the overlay specifications from the root module or from each other.

For example, the following command line is invalid:

A>1ink root(ovl),moreroot

The correct command is as follows:

A>1ink root,moreroot(ovl)

To nest overlays, you must specify them in the command line with nested
parentheses. For example, the following command line creates the
overlay system shown in Figure 18-2:

A>1ink menu(funcl (subl)(sub 2)) (func2) (func3 (sub3)(sub4))

End of Section 18





Section 18

18-1

Index

%

%INCLUDE ................................................. 14-4
%INCLUDE statement ..........................4-17, 8-3
%REPLACE statement ..........................4-17, 7-1

1

10's complement ..................................15-3, 15-4

A

A format...............................................4-11, 10-7
actual parameter.................................10-2, 16-15
actual parameters .......................................... 10-2
aggregate data ................................................. 3-1
algorithms ............................................16-1, 16-9
ALLOCATE statement ........................12-1, 12-4
application programs

menu-driven.............................................. 18-1
arguments........................................................ 4-5
arithmetic data ................................................ 3-1
arrays ...............................3-3, 3-4, 3-6, 3-7, 4-15
ASCII character data....................................... 4-8
assignment statement4-1, 9-1, 11-1, 11-6, 13-1,

14-2, 16-2
AUTOMATIC .............................................. 4-15

B

B format........................................................ 4-11
B1 format........................................................ 3-4
B2 format........................................................ 3-4
B3 format........................................................ 3-4
B4 format........................................................ 3-4
BASED storage class.................................... 4-15
BASED variable ........................................... 4-16
based variables.......................................3-1, 12-1
BASIC .......................................................... 15-1
BCD.............................................................. 15-4
BEGIN

block .........................................2-2, 12-3, 13-1
BIF.................................................................. 1-2

Binary Coded Decimal (BCD).................. 15-3
binary exponent .............................................. 3-2
BIT variables .................................................. 3-3
bit-string constant ........................................... 3-4
blank padding................................................ 4-11
block ............................................................... 2-2
BLOCK NESTING......................................... 2-2
block-structure .......................................4-6, 13-8
buffer .....................................................8-9, 11-6

size ............................................................ 8-11
built-in

DECIMAL function.................................. 16-7
function ROUND...................................... 16-1
functions .....................................1-2, 3-3, 16-1
LOCK ......................................................... 4-9

MOD function...........................................16-1

C

CALL statement.............2-3, 4-4, 4-5, 13-1, 18-3
label in ......................................................18-3

calls by reference ............................................4-5
CEIL function ...............................................16-9
CHARACTER .....................................8-14, 16-8

variables ......................................................3-3
Character-string constants...............................3-3
CLOSE statement ...........................................8-5
COBOL.........................................................15-1
code

generation....................................................6-3
optimization ................................................6-4

COLUMN .....................................................4-11
command file ..................................................6-5
common segments declared in one module ..18-4
compiler

options.........................................................6-3
computational expressions ..............................4-1
Computed GOTO............................................9-2
condition categories ...............................4-13, 6-6
condition processing ........... 4-2, 4-12, 9-1, 13-10
Condition Stack.............................................10-2
conditional branching...............................4-2, 4-6
connected storage............................................3-7
containing blocks ............................. 2-2, 2-3, 4-6
context.............................................................2-1
control

characters ..................................................8-14
data..............................................................3-4
format items ..............................................4-11
variable .......................................................4-2

cross sectional reference .................................3-6

D

data
aggregate.....................................................3-6
constants......................................................3-1
conversion4-1, 10-1, 11-7, 13-10, 15-1, 16-7,

16-8
format items ..............................................4-11
set.......................................................4-7, 4-10
structure ...............................................8-3, 8-9
structures...................................................12-8

debugging .......................................................6-5
DECIMAL ....................................................15-4

built-in function ........................................15-9
function .................................. 13-6, 15-7, 16-7

declarative statements ...................... 2-1, 3-1, 6-3
DECLARE statements ....................................3-1
default

buffer.........................................................18-5
drive



Index

Program

changing................................................18-4
values ..........................................................3-3

delete...............................................................4-9
DEMO program ..............................................6-5
dimension array.............................................4-16
DIRECT

attribute .....................................................8-12
files..............................................................4-8

DIVIDE built-in function.....................15-4, 15-9
DO-groups2-4, 7-1, 8-5, 8-12, 8-14, 9-1, 9-3, 10-

1, 10-2, 10-7, 11-1, 11-4, 11-6, 12-4, 13-1, 13-
7

downward reference to entry point................18-4
drive code......................................................18-4
dynamic memory management .....................17-1

E

E format ........................................................4-11
EDIT formats ................................................16-1
EDIT-directed ...............................................4-11
ENDPAGE condition....................................10-7
entry

constant ...................................... 2-4, 3-5, 14-4
point

explicit...................................................18-3
variable........................................................3-5

ENTRY
constants....................................................14-2
data.....................................................3-4, 14-2
variables ....................................................14-2

environment2-1, 2-2, 2-3, 2-4, 4-5, 4-13, 10-3,
12-3

ENVIRONMENT
attribute .......................................................4-9
option ..........................................................8-9

error.................................................................5-1
messages .....................................................6-4

executable statements...............................2-1, 6-3
explicit declaration..........................................3-1
expression .......................................................4-1
external

devices...................................3-6, 4-7, 4-8, 6-6
procedures ............................................2-2, 2-4

EXTERNAL attribute ...................................14-1

F

F format.........................................................4-11
file ...................................................................4-7

constant .......................................................3-6
variable.................................................3-6, 4-7

File
Access Methods ........................................4-10
Data.............................................................3-6
Descriptor....................................................4-9
Parameter Block (FPB) ...............................4-9

file id .............................................. 4-7, 4-8, 4-10

FILE variables...............................................14-2
FIXED BINARY3-1, 3-2, 4-8, 4-10, 12-2, 13-1,

13-6, 14-1, 16-6, 16-8, 17-1
data.................................................... 3-2, 13-1

FIXED DECIMAL3-1, 3-2, 3-3, 7-2, 7-3, 8-14,
13-4, 15-1, 15-2, 16-1, 16-5, 16-6, 16-8
data..............................................................3-2

FIXED OVERFLOW........4-14, 13-2, 15-4, 15-7
fixed record size ...................................... 4-8, 8-9
FLOAT BINARY7-1, 10-3, 13-4, 15-1, 15-2,

16-5, 16-7
data...................................................... 3-2, 7-2

formal parameters............13-1, 14-2, 14-4, 16-15
format

items..........................................................4-11
list..............................................................4-11

FORMAT statement......................................4-12
FORTRAN....................................................15-1
FREE statement................................... 12-1, 12-5
free storage area ............................................4-16
free-format language .......................................5-1
function

procedures ........................................... 2-3, 4-4
reference..................................... 2-3, 4-5, 13-1

G

GET EDIT.....................................................4-11
statement ................................ 10-7, 11-6, 11-7

GET LIST ........................................... 4-11, 8-12
statement ................8-3, 9-2, 10-3, 12-10, 13-9

GOTO
statements................................... 4-6, 9-3, 10-3

H

halting the compiler.........................................6-4
hierarchical structure.......................................2-1

I

IF statement........................................... 4-6, 4-17
implicit declaration........................... 3-1, 3-3, 3-4
implied

attributes....................................................4-10
base ................................................. 12-1, 12-2

Indentation ......................................................5-1
INDEX function................................ 11-1, 16-15
INITIAL attribute..........................................4-15
INPUT file.......................................................4-8
integers ............................................................3-2
internal

buffer sizes ..................................................4-9
buffers ............................................... 4-10, 8-5
file constant ......................................... 4-7, 8-2
procedure............................................. 2-3, 3-5
representation .................................. 4-16, 15-3
stack ............................................................6-6

invoking compiler ...........................................6-2



Index

Program

iteration4-2, 7-1, 11-1, 12-9, 12-10, 12-11, 16-1,
16-3

K

key4-8, 4-10, 4-14, 6-4, 8-8, 8-10, 8-11, 8-12, 8-
13

KEYED
attribute .......................................4-8, 8-9, 8-10
file............................................................... 4-8

KEYTO option ............................................. 8-11
keywords......................................................... 1-1

L

label
constants .......................................3-4, 9-1, 9-3
variable ....................................................... 3-4
variables...............................................9-1, 9-3

LABEL data.................................................... 3-4
level ................................................................ 4-9
LINE ............................................................. 4-11
linemark .......................................................... 4-8
LINESIZE attribute ........................................ 4-9
LINK-80 ....................................................... 18-5
LINK-86 ....................................................... 18-5
linkage editor

creating overlays with............................... 18-1
list processing ............................................... 12-1
LIST-directed................................................ 4-11
load

address ...................................................... 18-4
flag............................................................ 18-3

local reference................................................. 9-2
locked ............................................................. 4-9
logical units............................... 2-1, 2-4, 3-4, 4-5

M

main
procedure .................................................... 2-2
structure ...................................................... 3-8

MAIN option ................................................ 13-6
mantissa .......................................................... 3-2
mathematical functions ................................... 3-3
member ........................................................... 3-8
modular design.............................................. 18-1
module

upward reference from.............................. 18-4

N

native code...................................................... 6-3
nesting

level
maximum .............................................. 18-2

levels........................................................... 6-4
overlays..................................................... 18-5
to five level depth ..................................... 18-4

noncomputational expressions ........................ 4-1

nonlocal reference...........................................9-2
null

pointer ............................................12-9, 12-11
statement ............................................4-6, 4-17

O

object
code.............................................................6-3
file ...............................................................6-1

ON ENDFILE statements .............................10-6
ON ENDPAGE.............................................10-7
ON statement ............................. 10-1, 10-3, 10-6
on-body.........................................................4-13
ON-body .......................................................10-3
ONCODE function .......................................4-14
ON-condition

ON-units........................ 10-4, 10-6, 11-2, 11-7
ONFILE function..........................................4-14
ONKEY function ..........................................4-14
open mode.......................................................4-9
OPEN statement4-7, 4-8, 4-9, 4-10, 8-1, 8-2, 8-3,

8-5, 8-9, 8-12, 16-15, 17-1
operating systems......................... 1-2, 4-10, 4-12
OUTPUT file ..................................................4-8
overlay

method one constraints .............................18-3
method two constraints .............................18-4
names

when determined...................................18-2
specifications

changing names of ................................18-3
commas in .............................................18-5
composition of ......................................18-1
creating with LINK-80..........................18-5
creating with LINK-86..........................18-5
enclosing in parentheses .......................18-5
flexibility with.......................................18-3
general constraints ................................18-4
left parenthesis in ..................................18-5
lower on tree .........................................18-4
method one............................................18-2
nested ....................................................18-2
nesting...................................................18-5
passing parameters to ............................18-4
restrictions to.........................................18-2

storing on disk...................................18-2
tree structure of .................................18-2
use of.................................................18-1
using in a large program....................18-1
when to create ...................................18-3
writing...............................................18-2

SUB4.........................................................18-2
entry point to .........................................18-4
name of entry point to ...........................18-3

overlay manager...................................18-3, 18-5
passing control from .................................18-3



Index

Program

P

PAGE............................................................4-12
pagemark.........................................................4-8
PAGESIZE attribute .......................................4-9
parameter list.................................................18-2
Parse Function...............................................11-4
PASCAL .......................................................15-1
Pass

1 6-3
2 6-3
3 6-4

pass by
reference......................................................4-5
value...................................................4-5, 13-1

passing ..........................................................18-4
agreeing with overlay................................18-4

picture
edit format.................................................16-9

pointer ...........................................................4-15
data..............................................................3-6
qualifier ............................................4-16, 12-1
variable...............................................3-6, 12-1

POINTER variable........................................4-16
pointer-qualified reference ............................4-16
precision3-2, 13-4, 15-2, 15-4, 15-5, 15-7, 15-9,

16-1, 16-7
predefined file constants ...............................4-12
Preprocessor Statements ...............................4-17
PRINT 4-7, 4-8, 4-9, 4-12, 4-15, 8-3, 10-4, 12-12

attribute .......................................................8-7
procedure

body ............................................................2-3
definition .....................................................4-5
header...................................................2-3, 4-5
heading......................................................14-4
invocation..................................... 2-3, 4-2, 4-5
name............................................................2-3

PROCEDURE.................................................9-2
blocks ..........................................................2-3

program
development ................................................6-1
maintenance ................................. 2-3, 5-1, 5-3
size

upper limit .............................................18-1
PUT EDIT statements ..........................4-11, 10-7
PUT LIST statements.............................4-11, 8-7

R

R 4-12
Read ................................................................4-9
READ............................................................4-11

statement ...................................................8-11
with KEY statement ..................................8-12

Read-Only.......................................................4-9
RECORD

file ...............................................................4-8
I/O .............................................................4-10

recursive ..............................4-4, 4-15, 13-2, 13-8
processing..................................................13-1

RECURSIVE attribute ..................................13-1
relative record .................................................4-8
RETURN statement ......................................13-2
RETURNS attribute ......................................14-2
REVERT statement............................. 10-1, 10-6
root module ...................................................18-3

with one overlay........................................18-2
RSL ............................................ 14-2, 14-4, 16-6
run-time stack................................................13-6
Run-time Subroutine Library (RSL)6-1, 6-5, 12-

1, 14-1, 18-1

S

saving memory with overlays .......................18-1
scalar

value ............................................................2-3
scale factor3-2, 15-2, 15-5, 15-6, 15-7, 15-8, 15-

9, 16-1, 16-7, 16-8
sequence control statements ............................4-2
SEQUENTIAL files ........................................4-8
Shared .............................................................4-9
SIGNAL statement............4-13, 10-1, 10-3, 10-7
single-precision number ..................................3-2
size of programs

upper limit .................................................18-1
SKIP.................................................... 4-12, 10-7
source file ........................................................6-1
special

characters ....................................................1-2
stack ........................................... 15-4, 15-7, 15-8
STACK option ..............................................13-6
standard .........................................................4-15
STATIC.........................................................4-15

attribute .....................................................14-2
STOP statement................................... 7-1, 13-10
storage

class...........................................................4-15
sharing.........................................................4-5

STREAM
file ................ 4-8, 8-3, 8-11, 8-12, 10-4, 12-12
I/O .............................................................4-10

string
processing........................................ 11-1, 11-4
variables ......................................................3-3

structural statements........................................2-1
structure........................................ 3-7, 12-5, 14-1
structured language .........................................1-1
subcodes ....................................... 4-13, 6-6, 10-1
subroutine................................... 11-4, 12-3, 16-6

procedures ........................................... 2-3, 4-4
subroutines ...............12-1, 12-3, 12-9, 14-1, 14-4
subscripts.......................................................4-16



Index

Program

Subset G........................................1-1, 4-15, 15-6
SUBSTR ..............................................11-1, 11-7
SYM file ......................................................... 6-2
Symbol Table........................ 6-1, 6-3, 12-5, 14-1
SYSIN................................. 4-12, 6-6, 10-3, 10-6
SYSPRINT .....................................4-12, 7-1, 8-7
system files ..................................................... 6-2

T

temporary variables ........................................ 6-4
TITLE attribute............................................... 4-8
tokens................................ 11-4, 11-6, 11-7, 13-9
traceback......................................................... 6-6
Transient Program Area................6-4, 12-1, 18-1
TRANSLATE function................................. 11-1
tree structures.................................................. 6-4
TRUNC........................................................... 5-1
truncation ................... 4-11, 7-2, 15-1, 15-2, 15-7

error ............................................................ 3-2

U

unconditional branching...........................4-2, 4-6
UNLOCK functions ........................................4-9
UPDATE file ..................................................4-8
upward reference to entry point ....................18-4

V

VARYING attribute........................................3-3
vector .......................................................9-2, 9-3
VERIFY function.................................11-1, 11-6

W

wildcard reference...........................................4-9
Write ...............................................................4-9
WRITE statements ....................... 4-11, 8-9, 8-14
WRITE with KEYFROM statement .............8-12
writing overlays ............................................18-2

X

X ..................................................................4-12


	Introduction
	What is PL/I?
	Using This Manual
	Notation

	The PL/I Language
	Structural Statements
	Declarative Statements
	Executable Statements
	PL/I Blocks
	Procedures
	DO-groups

	Declarations
	Scalar Data
	Arithmetic Data
	FIXED BINARY
	FLOAT BINARY
	FIXED DECIMAL

	String Data
	Control Data
	Pointer Data
	File Data

	Data Aggregates
	Arrays
	Structures


	Executable Statements
	Assignment Statements
	Sequence Control Statements
	Iteration
	Procedure Invocation
	Parameter Passing
	Conditional Branch
	Unconditional Branch

	I/O and File-handling Statements
	Opening Files
	File Attributes
	Implied Attributes
	Closing Files
	File Access Methods
	Data Format Items
	Control Format Items
	Predefined Files

	Condition-processing Statements
	The ON Statement
	The REVERT Statement
	The SIGNAL Statement
	Condition Categories
	Condition Processing Built-in Functions

	Memory Management Statements
	BASED Variables and Pointers
	The ALLOCATE Statement
	The FREE Statement

	Preprocessor Statements
	Null Statements

	Programming Style
	Case
	Indentation

	Using the System
	PL/1 System Files
	Invoking the Compiler
	Compiler Operation
	The DEMO Program
	Running DEMO
	Error Messages and Codes

	Using Different Data Types
	The FLTPOLY Program
	The DECPOLY Program

	STREAM and RECORD File Processing
	File Copy Program
	Name and Address File
	The CREATE Program
	The RETRIEVE Program

	An Information Management System
	The ENTER Program
	The KEYFILE Program
	The UPDATE Program
	The REPORT Program


	Label Constants, Variables, and Parameters
	Labeled Statements
	Program Labels
	Computed GOTO
	Label References
	Example Program

	Condition Processing
	Condition Categories
	Condition Processing Statements
	ON and REVERT
	SIGNAL

	Examples of Condition Processing
	The FLTPOLY2 Program
	The COPYLPT Program


	Character String Processing
	The OPTIMIST Program
	A Parse Function
	The GNT Procedure
	The DO-Group


	List Processing
	Based and Pointer Variables
	The REVERSE Program
	A Network Analysis Program
	NETWORK List Structures
	Traversing the Linked Lists
	Overall Program Structure
	The Setup Procedure
	The Connect Procedure
	The Find Procedure
	The Print-All Procedure
	The Print-Paths Procedure
	The Print-Route Procedure
	The Shortest-Distance Procedure
	The Free-All Procedure
	NETWORK Expansion


	Recursive Processing
	The Factorial Function
	FIXED DECINAL and FLOAT BINARY Evaluation
	The Ackermann Function
	An Arithmetic Expression Evaluator
	The Exp Procedure
	Condition Processing
	Improvements


	Separate Compilation
	Data and Program Declarations
	ENTRY Data
	An Example of Separate Compilation

	Decimal Computations
	A Comparison of Decimal and Binary Operations
	Decimal Representation
	Addition and Subtraction
	Multiplication
	Division

	Commercial Processing
	A Simple Loan Program
	Ordinary Annuity
	Mixed Data Types
	Evaluating the Present Value PV
	Evaluating the Payment PHT
	Evaluating the Number of Periods n

	Loan Payment Schedule Format
	Variable Declarations
	Program Execution
	Display Formats

	Computation of Depreciation Schedules
	General Algorithms
	Selecting the Schedule
	Displaying the Output


	Dynamic Storage and Stack Routines
	Dynamic Storage Subroutines
	The TOTWDS and MAXWDS Functions
	The ALLWDS Subroutine

	The STKSIZ Function

	Overlays
	Using Overlays in PL/I
	Writing Overlays in PL/I
	Overlay Method One
	Overlay Method Two
	General Overlay Constraints

	Command Line Syntax


