Chapter 3 - Program Control THE WHILE LOOP The C programming language has several structures for looping and conditional branching. We will cover them all in this chapter and we will begin with the while loop. The while loop continues to loop while some condition is true. When the condition becomes false, the looping is discontinued. It therefore does just what it says it does, the name of the loop being very descriptive. Load the program WHILE.C and display it for an example of a while loop. We begin with a comment and the program name, then go on to define an integer variable "count" within the body of the program. The variable is set to zero and we come to the while loop itself. The syntax of a while loop is just as shown here. The keyword "while" is followed by an expression of something in parentheses, followed by a compound statement bracketed by braces. As long as the expression in parenthesis is true, all statements within the braces will be executed. In this case, since the variable count is incremented by one every time the statements are executed, it will eventually reach 6, the statement will not be executed, and the loop will be terminated. The program control will resume at the statement following the statements in braces. We will cover the compare expression, the one in parentheses, in the next chapter. Until then, simply accept the expressions for what you think they should do and you will probably be correct. Several things must be pointed out regarding the while loop. First, if the variable count were initially set to any number greater than 5, the statements within the loop would not be executed at all, so it is possible to have a while loop that never is executed. Secondly, if the variable were not incremented in the loop, then in this case, the loop would never terminate, and the program would never complete. Finally, if there is only one statement to be executed within the loop, it does not need braces but can stand alone. Compile and run this program. THE DO-WHILE LOOP A variation of the while loop is illustrated in the program DOWHILE.C, which you should load and display. This program is nearly identical to the last one except that the loop begins with the reserved word "do", followed by a compound statement in braces, then the reserved word Page 13 Chapter 3 - Program Control "while", and finally an expression in parentheses. The statements in the braces are executed repeatedly as long as the expression in parentheses is true. When the expression in parentheses becomes false, execution is terminated, and control passes to the statements following this statement. Several things must be pointed out regarding this statement. Since the test is done at the end of the loop, the statements in the braces will always be executed at least once. Secondly, if "i" were not changed within the loop, the loop would never terminate, and hence the program would never terminate. Finally, just like for the while loop, if only one statement will be executed within the loop, no braces are required. Compile and run this program to see if it does what you think it should do. It should come as no surprise to you that these loops can be nested. That is, one loop can be included within the compound statement of another loop, and the nesting level has no limit. THE FOR LOOP The "for" loop is really nothing new, it is simply a new way to describe the "while" loop. Load and edit the file named FORLOOP.C for an example of a program with a "for" loop. The "for" loop consists of the reserved word "for" followed by a rather large expression in parentheses. This expression is really composed of three fields separated by semi-colons. The first field contains the expression "index = 0" and is an initializing field. Any expressions in this field are executed prior to the first pass through the loop. There is essentially no limit as to what can go here, but good programming practice would require it to be kept simple. Several initializing statements can be placed in this field, separated by commas. The second field, in this case containing "index < 6", is the test which is done at the beginning of each loop through the program. It can be any expression which will evaluate to a true or false. (More will be said about the actual value of true and false in the next chapter.) The expression contained in the third field is executed each time the loop is executed but it is not executed until after those statements in the main body of the loop are executed. This field, like the first, can also be composed of several operations separated by commas. Following the for() expression is any single or compound statement which will be executed as the body of the Page 14 Chapter 3 - Program Control loop. A compound statement is any group of valid C statements enclosed in braces. In nearly any context in C, a simple statement can be replaced by a compound statement that will be treated as if it were a single statement as far as program control goes. Compile and run this program. You may be wondering why there are two statements available that do exactly the same thing because the "while" and the "for" loop do exactly the same thing. The "while" is convenient to use for a loop that you don't have any idea how many times the loop will be executed, and the "for" loop is usually used in those cases when you are doing a fixed number of iterations. The "for" loop is also convenient because it moves all of the control information for a loop into one place, between the parentheses, rather than at both ends of the code. It is your choice as to which you would rather use. THE IF STATEMENT Load and display the file IFELSE.C for an example of our first conditional branching statement, the "if". Notice first, that there is a "for" loop with a compound statement as its executable part containing two "if" statements. This is an example of how statements can be nested. It should be clear to you that each of the "if" statements will be executed 10 times. Consider the first "if" statement. It starts with the keyword "if" followed by an expression in parentheses. If the expression is evaluated and found to be true, the single statement following the "if" is executed, and if false, the following statement is skipped. Here too, the single statement can be replaced by a compound statement composed of several statements bounded by braces. The expression "data == 2" is simply asking if the value of data is equal to 2, this will be explained in detail in the next chapter. (Simply suffice for now that if "data = 2" were used in this context, it would mean a completely different thing.) NOW FOR THE IF-ELSE The second "if" is similar to the first with the addition of a new reserved word, the "else" following the first printf statement. This simply says that if the expression in the parentheses evaluates as true, the first expression is executed, otherwise the expression following the "else" is executed. Thus, one of the two expressions will always be executed, whereas in the first example the single expression was either executed or skipped. Both will Page 15 Chapter 3 - Program Control find many uses in your C programming efforts. Compile and run this program to see if it does what you expect. THE BREAK AND CONTINUE Load the file named BREAKCON.C for an example of two new statements. Notice that in the first "for", there is an if statement that calls a break if xx equals 8. The break will jump out of the loop you are in and begin executing statements following the loop, effectively terminating the loop. This is a valuable statement when you need to jump out of a loop depending on the value of some results calculated in the loop. In this case, when xx reaches 8, the loop is terminated and the last value printed will be the previous value, namely 7. The next "for" loop, contains a continue statement which does not cause termination of the loop but jumps out of the present iteration. When the value of xx reaches 8 in this case, the program will jump to the end of the loop and continue executing the loop, effectively eliminating the printf statement during the pass through the loop when xx is eight. Compile and run the program to see if it does what you expect. THE SWITCH STATEMENT Load and display the file SWITCH.C for an example of the biggest construct yet in the C language, the switch. The switch is not difficult, so don't let it intimidate you. It begins with the keyword "switch" followed by a variable in parentheses which is the switching variable, in this case "truck". As many cases as desired are then enclosed within a pair of braces. The reserved word "case" is used to begin each case entered followed by the value of the variable, then a colon, and the statements to be executed. In this example, if the variable "truck" contains the value 3 during this pass of the switch statement, the printf will cause "The value is three" to be displayed, and the "break" statement will cause us to jump out of the switch. Once an entry point is found, statements will be executed until a "break" is found or until the program drops through the bottom of the switch braces. If the variable has the value 5, the statements will begin executing where "case 5 :" is found, but the first statements found are where the case 8 statements are. These are executed and the break statement in the "case 8" portion will direct the execution out the bottom of the switch. The various case Page 16 Chapter 3 - Program Control values can be in any order and if a value is not found, the default portion of the switch will be executed. It should be clear that any of the above constructs can be nested within each other or placed in succession, depending on the needs of the particular programming project at hand. Compile and run SWITCH.C to see if it does what you expect it to after this discussion. Load and display the file GOTOEX.C for an example of a file with some "goto" statements in it. To use a "goto" statement, you simply use the reserved word "goto" followed by the symbolic name to which you wish to jump. The name is then placed anywhere in the program followed by a colon. You are not allowed to jump into any loop, but you are allowed to jump out of a loop. Also, you are not allowed to jump out of any function into another. These attempts will be flagged by your Turbo C compiler as an error if you attempt any of them. This particular program is really a mess but it is a good example of why software writers are trying to eliminate the use of the "goto" statement as much as possible. The only place in this program where it is reasonable to use the "goto" is the one in line 17 where the program jumps out of the three nested loops in one jump. In this case it would be rather messy to set up a variable and jump successively out of all three loops but one "goto" statement gets you out of all three. Some persons say the "goto" statement should never be used under any circumstances but this is rather narrow minded thinking. If there is a place where a "goto" will clearly do a neater control flow than some other construct, feel free to use it. It should not be abused however, as it is in the rest of the program on your monitor. Entire books are written on "gotoless" programming, better known as Structured Programming. These will be left to your study. One point of reference is the Visual Calculator described in Chapter 14 of this tutorial. This program is contained in four separately compiled programs and is a rather large complex program. If you spend some time studying the source code, you will find that there is not a single "goto" statement anywhere in it. Compile and run GOTOEX.C and study its output. It would be a good exercise to rewrite it and see how much more readable it is when the statements are listed in order. Page 17 Chapter 3 - Program Control FINALLY, A MEANINGFUL PROGRAM Load the file named TEMPCONV.C for an example of a useful, even though somewhat limited program. This is a program that generates a list of centigrade and fahrenheit temperatures and prints a message out at the freezing point of water and another at the boiling point of water. Of particular importance is the formatting. The header is simply several lines of comments describing what the program does in a manner that catches the readers attention and is still pleasing to the eye. You will eventually develop your own formatting style, but this is a good way to start. Also if you observe the for loop, you will notice that all of the contents of the compound statement are indented 3 spaces to the right of the "for" reserved word, and the closing brace is lined up under the "f" in "for". This makes debugging a bit easier because the construction becomes very obvious. You will also notice that the "printf" statements that are in the "if" statements within the big "for" loop are indented three additional spaces because they are part of another construct. This is the first program in which we used more than one variable. The three variables are simply defined on three different lines and are used in the same manner as a single variable was used in previous programs. By defining them on different lines, we have an opportunity to define each with a comment. ANOTHER POOR PROGRAMMING EXAMPLE Recalling UGLYFORM.C from the last chapter, you saw a very poorly formatted program. If you load and display DUMBCONV.C you will have an example of poor formatting which is much closer to what you will actually find in practice. This is the same program as TEMPCONV.C with the comments removed and the variable names changed to remove the descriptive aspect of the names. Although this program does exactly the same as the last one, it is much more difficult to read and understand. You should begin to develop good programming practices now. Compile and run this program to see that it does exactly what the last one did. Page 18 Chapter 3 - Program Control PROGRAMMING EXERCISES 1. Write a program that writes your name on the monitor ten times. Write this program three times, once with each looping method. 2. Write a program that counts from one to ten, prints the values on a separate line for each, and includes a message of your choice when the count is 3 and a different message when the count is 7. Page 19